Conference on Algebras, Representations, and Applications

代数、表示和应用会议

基本信息

  • 批准号:
    1805763
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

The conference "Algebras, Representations, and Applications" will be held at Universidad Nacional San Antonio Abad de Cusco in Peru from August 27 to August 31, 2018. This conference is a satellite conference for the 2018 International Congress of Mathematicians that will bring together mathematicians from all over the world. This award will provide support for US-based participants with priority given to participants from under-represented groups and early-career researchers. The conference lectures will be in a colloquium style in order to make the material accessible to post-doctoral scholars and graduate students. There will also be short communication sessions consisting of 30-minute talks delivered by early-carrier mathematicians. The representation theory of Lie algebras and related algebraic structures has become a comprehensive and mainstream research area in mathematics. In particular, new categorical and geometric constructions have taken the lead not only within Lie theory, but also in other areas of mathematics and physics such as combinatorics, group theory, number theory, integrable systems, partial differential equations, topology and conformal field theory. Recent developments in representation theory using D-modules, Koszul duality, Hodge theory, and higher category are strengthening these interactions further. The conference will cover a wide range of these developments and their applications. The aim of the conference is to bring together leading specialists to discuss the major achievements of the last decade in algebras and representation theory, as well as problems and fundamental conjectures that continue to abound the area. Further details can be found at the conference website https://sites.google.com/view/icm2018satellitecusco/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
会议“代数,表示和应用”将于2018年8月27日至8月31日在秘鲁的圣安东尼奥阿巴德德库斯科国立大学举行。本次会议是2018年国际数学家大会的卫星会议,将汇集来自世界各地的数学家。该奖项将为美国的参与者提供支持,优先考虑来自代表性不足的群体和早期职业研究人员的参与者。会议讲座将以座谈会的形式进行,以便使博士后学者和研究生能够获得材料。此外,还将举行简短的交流会,由早期运营商数学家提供30分钟的演讲。李代数及其相关代数结构的表示理论已成为数学中一个综合性的主流研究领域。特别是,新的范畴和几何结构已率先不仅在李群理论,而且在其他领域的数学和物理,如组合,群论,数论,可积系统,偏微分方程,拓扑和共形场论。最近的发展表示理论使用D-模,Koszul对偶,霍奇理论,和更高的范畴进一步加强这些相互作用。会议将涵盖这些发展及其应用的广泛范围。会议的目的是汇集领先的专家,讨论过去十年在代数和表示论方面的主要成就,以及继续充斥该领域的问题和基本知识。 更多细节可以在会议网站www.example.com上找到https://sites.google.com/view/icm2018satellitecusco/.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitar Grantcharov其他文献

New Singular Gelfand–Tsetlin $${\mathfrak{gl}(n)}$$ -Modules of Index 2
  • DOI:
    10.1007/s00220-017-2967-x
  • 发表时间:
    2017-08-02
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Vyacheslav Futorny;Dimitar Grantcharov;Luis Enrique Ramirez
  • 通讯作者:
    Luis Enrique Ramirez
A Categorification of $\displaystyle {\mathfrak q} (2)$ -Crystals
  • DOI:
    10.1007/s10468-016-9651-2
  • 发表时间:
    2016-11-04
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Dimitar Grantcharov;Ji Hye Jung;Seok-Jin Kang;Myungho Kim
  • 通讯作者:
    Myungho Kim

Dimitar Grantcharov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitar Grantcharov', 18)}}的其他基金

Representations of Lie and Jordan Algebras, Their Representations and Applications
李代数和乔丹代数的表示及其表示和应用
  • 批准号:
    1934577
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant

相似海外基金

Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
  • 批准号:
    23K03029
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sheaf Representations of Algebras and Logic of Sheaves
代数的层表示和层逻辑
  • 批准号:
    22K13950
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Reserch on representations of association schemes and generalized Terwilliger algebras
关联格式表示和广义特威利格代数研究
  • 批准号:
    22K03266
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
  • 批准号:
    RGPIN-2018-06417
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Simple smooth representations of Lie algebras
李代数的简单平滑表示
  • 批准号:
    RGPIN-2020-04774
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Representations of p-adic groups and dg-algebras
p-adic 群和 dg-代数的表示
  • 批准号:
    2602995
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
Representations of Iwahori-Hecke algebras
Iwahori-Hecke 代数的表示
  • 批准号:
    2609492
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
  • 批准号:
    21F20788
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
  • 批准号:
    RGPIN-2018-06417
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了