Quantum State Engineering with Novel Nonlinear Interferometric Techniques
采用新型非线性干涉技术的量子态工程
基本信息
- 批准号:1806425
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classical physics underpins many of the technological advances in computers, optical communications, and mobile devices that have made profound impacts in daily life, the economy, and society. However, as technology pushes forward, following Moore's law in computer engineering, it is gradually reaching limits where classical physics will no longer suffice. At this point, electrical and optical engineers will need to use quantum physics, which, up to the end of 20th century, had been mostly the subject of fundamental study. A key component for quantum technologies will be the ability to engineer quantum states of light, or photons. This research project will address the problem of quantum state engineering by exploring new ways to control the shape of single-photon quantum states using quantum interference. Because single-photon states are a basic building block for quantum technologies, this project will support the development of practical and versatile quantum devices for applications such as quantum information processing. The table-top experiments in this project are also an ideal platform for training and preparing next generation quantum physicists. Undergraduate students and graduate students will be involved in this research program. This project will deepen their understanding of quantum physics, which in turn will promote further applications using quantum interference techniques.Photon indistinguishability is essential to achieve complete quantum interference, which is the key in many protocols in optical quantum information processing with linear optical elements. The achievement of photon indistinguishability in experiments is through mode matching of photon states. While spatial modes of optical fields are relatively easy to manage, the temporal modes are much more complicated, especially for ultra-short pulses. In this research program, this team will employ a recently developed nonlinear quantum interferometric technique to achieve custom engineering of the spectral and temporal modes of the quantum states produced from ultra-fast nonlinear optical interactions. The essence of the technique is in the manipulation of the spectral phase shift that controls the nonlinear interaction via quantum interference and leads to interference filtering and eventually engineering of the spectral profiles of the output states for single mode operation. This team will implement the technique experimentally and demonstrate its effectiveness with a multi-photon interference experiment to achieve the efficient production of transform-limited single-photon states in single modes. Quantum state engineering is important for experimental implementations of quantum information protocols. It can be used to tailor the temporal modes of the optical fields to fit the experimental requirement and thus has very practical significance in the study of quantum information processing. This investigation provides a new approach for quantum state engineering.This project is jointly funded by the Quantum Information Science (QIS) Program in the Physics Division in the Mathematical and Physical Sciences Directorate, and the Electronics, Photonics and Magnetic Devices (EPMD) Program in the Division of Electrical, Communications and Cyber Systems Division in the Engineering Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经典物理学支撑着计算机、光通信和移动设备的许多技术进步,这些进步对日常生活、经济和社会产生了深远的影响。然而,随着技术的进步,在计算机工程中遵循摩尔定律,它逐渐达到了经典物理不再足够的极限。在这一点上,电气和光学工程师将需要使用量子物理学,直到20世纪末,它一直是基础研究的主要主题。量子技术的一个关键组成部分将是设计光或光子的量子态的能力。该研究项目将通过探索利用量子干涉控制单光子量子态形状的新方法来解决量子态工程问题。由于单光子态是量子技术的基本组成部分,因此该项目将支持用于量子信息处理等应用的实用和通用量子器件的开发。本项目的桌面实验也是培养和准备下一代量子物理学家的理想平台。本科生和研究生将参与这项研究计划。这个项目将加深他们对量子物理的理解,进而促进量子干涉技术的进一步应用。光子不可分辨性是实现完全量子干涉的必要条件,是利用线性光学元件进行光量子信息处理的关键协议。实验中光子不可分辨是通过光子态的模式匹配实现的。光场的空间模式相对容易管理,而时间模式则要复杂得多,特别是对于超短脉冲。在这个研究项目中,该团队将采用最近开发的非线性量子干涉技术来实现超快速非线性光学相互作用产生的量子态的光谱和时间模式的定制工程。该技术的本质是通过量子干涉控制光谱相移,从而控制非线性相互作用,并导致干涉滤波,最终实现单模操作输出态的光谱轮廓工程。该团队将通过实验实现该技术,并通过多光子干涉实验证明其有效性,以实现在单模下有效地产生变换有限的单光子态。量子态工程对于量子信息协议的实验实现具有重要意义。它可以用来调整光场的时间模式以适应实验要求,因此在量子信息处理的研究中具有非常实际的意义。这项研究为量子态工程提供了新的途径。该项目由数学和物理科学理事会物理部的量子信息科学(QIS)计划和工程理事会电气、通信和网络系统部的电子、光子学和磁性器件(EPMD)计划共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parametric amplifier for Bell measurement in continuous-variable quantum state teleportation
用于连续可变量子态隐形传态贝尔测量的参量放大器
- DOI:10.1103/physreva.102.032407
- 发表时间:2020
- 期刊:
- 影响因子:2.9
- 作者:Chen, Xin;Ou, Z. Y.
- 通讯作者:Ou, Z. Y.
Direct Temporal Mode Measurement for the Characterization of Temporally Multiplexed High Dimensional Quantum Entanglement in Continuous Variables
用于表征连续变量中时间复用高维量子纠缠的直接时间模式测量
- DOI:10.1103/physrevlett.124.213603
- 发表时间:2020
- 期刊:
- 影响因子:8.6
- 作者:Nan Huo;Yuhong Liu;Jiamin Li;Liang Cui;Xin Chen;Rithwik Palivela;Tianqi Xie;Xiaoying Li;Z. Y. Ou
- 通讯作者:Z. Y. Ou
Quantum state engineering by nonlinear quantum interference
- DOI:10.1103/physreva.102.033718
- 发表时间:2018-11
- 期刊:
- 影响因子:2.9
- 作者:L. Cui;Jie Su;Jiamin Li;Yuhong Liu;Xiaoying Li;Z. Ou
- 通讯作者:L. Cui;Jie Su;Jiamin Li;Yuhong Liu;Xiaoying Li;Z. Ou
Mode structure of a broadband high gain parametric amplifier
- DOI:10.1103/physrevresearch.3.023186
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Xin Chen;Jacob Zhang;Z. Ou
- 通讯作者:Xin Chen;Jacob Zhang;Z. Ou
Quantum dense metrology by an SU(2)-in-SU(1,1) nested interferometer
- DOI:10.1063/5.0012304
- 发表时间:2020-02
- 期刊:
- 影响因子:4
- 作者:W. Du;J. F. Chen;Z. Ou;Weiping Zhang
- 通讯作者:W. Du;J. F. Chen;Z. Ou;Weiping Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gautam Vemuri其他文献
Effect of lattice boundary on Anderson localization of nonclassical light in optical waveguide arrays
晶格边界对光波导阵列中非经典光安德森局域化的影响
- DOI:
10.1088/2040-8986/acf0d2 - 发表时间:
2023 - 期刊:
- 影响因子:2.1
- 作者:
Shubradeep Majumder;Amit Rai;Gautam Vemuri - 通讯作者:
Gautam Vemuri
Effects of quantum noise on the nonlinear dynamics of a semiconductor laser subject to two spectrally filtered, time-delayed optical feedbacks
- DOI:
10.1016/j.optcom.2016.03.017 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:
- 作者:
Joseph S. Suelzer;Awadhesh Prasad;Rupamanjari Ghosh;Gautam Vemuri - 通讯作者:
Gautam Vemuri
Gautam Vemuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gautam Vemuri', 18)}}的其他基金
Normalizing Computational Methods in the Undergraduate Physics Curriculum
本科物理课程中计算方法的规范化
- 批准号:
2021209 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Nonlinear Dynamics in Semiconductor Lasers Due to Filtered Optical Feedback: Fundamental Issues, and Applications to Chaotic Encryption and Signal Routing
滤波光学反馈导致的半导体激光器非线性动力学:基本问题以及混沌加密和信号路由的应用
- 批准号:
0010092 - 财政年份:2001
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
- 批准号:61701437
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
- 批准号:
2328993 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Quantum State Engineering with Bose-Einstein Condensates: Dressed-State and Hydrodynamic Approaches
玻色-爱因斯坦凝聚体的量子态工程:修饰态和流体动力学方法
- 批准号:
2207588 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
- 批准号:
2742534 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Studentship
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
- 批准号:
2780896 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Studentship
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
- 批准号:
2780899 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Studentship
Coherent control engineering for state estimation in quantum linear systems
量子线性系统状态估计的相干控制工程
- 批准号:
DP180101805 - 财政年份:2018
- 资助金额:
$ 32万 - 项目类别:
Discovery Projects
Quantum technology capital: QUES2T (Quantum Engineering of Solid-state Technologies)
量子科技资本:QUES2T(固态技术量子工程)
- 批准号:
EP/N015118/1 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Research Grant
Development of deterministic quantum logic gates based on dressed-state engineering
基于修饰态工程的确定性量子逻辑门的开发
- 批准号:
16K05497 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Macroscopic quantum state engineering and transport in polaritonic devices
极化子器件中的宏观量子态工程和输运
- 批准号:
DP160101371 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Discovery Projects
Quantum State Engineering and Quantum Information Processing with Ultra-Cold Polar Molecules
超冷极性分子的量子态工程与量子信息处理
- 批准号:
1211914 - 财政年份:2012
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant