Normalizing Computational Methods in the Undergraduate Physics Curriculum

本科物理课程中计算方法的规范化

基本信息

  • 批准号:
    2021209
  • 负责人:
  • 金额:
    $ 29.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to serve the national interest by strengthening undergraduate students' use of computational skills to solve problems. The traditional physics curriculum trains students to think of using mathematical methods as the normal way to solve physics problems. However, the proliferation of and advances in computer hardware and software suggest that students who are trained to use computers to solve problems may be able to tackle more difficult and sophisticated problems than they can with mathematical methods alone. Ideally, students should think of mathematical and computational methods as complementary and make judicious use of both to solve problems. Since the traditional physics curriculum already emphasizes mathematical methods, the goal of this project is to train physics majors to use computers to solve physics problems and to think of computational problem-solving as a normal way to approach problems, in the same way students have traditionally been trained to view mathematical methods. The field of physics should benefit from having students who see computation as a natural way to solve problems, because these students will be confident about tackling a wider range of problems. In addition, students who are trained to use computers to solve scientific problems bring additional tools and understanding to bear on tasks. As a result, they should find themselves well-prepared for employment in business and industry.The investigators aim to get physics students to see computational methods as a normal way to approach physics problems, instead of an unusual technique limited to narrowly defined problems. By modifying physics courses to embed computational methods, the investigators hypothesize that students will gain the confidence to use computation routinely and will develop judgment as to which problems may be solved analytically, which problems require numerical methods, and how the interplay between these complementary techniques can be fruitful. To achieve this vision, the investigators will infuse every course in the undergraduate physics curriculum with computational methods. The primary work will include: (1) developing, testing, and refining curricular materials used to incorporate computational techniques throughout the curriculum; (2) developing, refining, and validating assessment instruments used to measure students' affective and cognitive development with respect to computational methods; and (3) conducting research on students' development of self-efficacy in problem-solving as they progress through the curriculum. The project will address the following research questions: At what points in the curriculum do students gain self-efficacy with respect to various computational skills? Do they gain confidence in their analytical and computational skills at the same points, or independently? How strongly is self-efficacy tied to grades and other external factors? This project is funded by the Improving Undergraduate STEM Education (IUSE: EHR) program, which supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过加强大学生使用计算技能解决问题来服务于国家利益。传统的物理课程培养学生将数学方法视为解决物理问题的常规方法。然而,计算机硬件和软件的普及和进步表明,那些经过训练使用计算机解决问题的学生可能比他们单独使用数学方法能够解决更困难和复杂的问题。理想情况下,学生应该认为数学和计算方法是互补的,并明智地使用两者来解决问题。由于传统的物理课程已经强调了数学方法,这个项目的目标是训练物理专业的学生使用计算机来解决物理问题,并将计算解决问题视为解决问题的一种正常方式,就像学生传统上被训练来看待数学方法一样。物理领域应该受益于那些将计算视为解决问题的自然方法的学生,因为这些学生将有信心解决更广泛的问题。此外,那些接受过使用计算机解决科学问题训练的学生会带来额外的工具和理解来承担任务。因此,他们应该发现自己为商业和工业就业做好了充分的准备。研究人员的目标是让物理专业的学生看到计算方法是解决物理问题的一种正常方式,而不是一种局限于狭义问题的不寻常技术。通过修改物理课程以嵌入计算方法,研究人员假设学生将获得常规使用计算的信心,并将发展判断哪些问题可以用分析方法解决,哪些问题需要数值方法,以及这些互补技术之间的相互作用如何能够富有成效。为了实现这一愿景,研究人员将在本科物理课程的每门课程中注入计算方法。主要工作将包括:(1)开发、测试和改进课程材料,将计算技术纳入整个课程;(2)开发、完善和验证评估工具,用于测量学生在计算方法方面的情感和认知发展;(3)研究学生在课程学习过程中解决问题自我效能感的发展。该项目将解决以下研究问题:在课程的哪一点上,学生在各种计算技能方面获得自我效能感?他们对自己的分析和计算能力的信心是在同一点上获得的,还是独立获得的?自我效能感与成绩和其他外部因素的联系有多紧密?该项目由改善本科STEM教育(IUSE: EHR)计划资助,该计划支持研究和开发项目,以提高所有学生STEM教育的有效性。通过参与学生学习轨道,该计划支持有前途的实践和工具的创建,探索和实施。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preliminary efforts to evaluate an initiative introducing computation across the undergraduate physics curriculum
评估在本科物理课程中引入计算的举措的初步努力
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gautam Vemuri其他文献

Effect of lattice boundary on Anderson localization of nonclassical light in optical waveguide arrays
晶格边界对光波导阵列中非经典光安德森局域化的影响
  • DOI:
    10.1088/2040-8986/acf0d2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Shubradeep Majumder;Amit Rai;Gautam Vemuri
  • 通讯作者:
    Gautam Vemuri
Effects of quantum noise on the nonlinear dynamics of a semiconductor laser subject to two spectrally filtered, time-delayed optical feedbacks
  • DOI:
    10.1016/j.optcom.2016.03.017
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph S. Suelzer;Awadhesh Prasad;Rupamanjari Ghosh;Gautam Vemuri
  • 通讯作者:
    Gautam Vemuri

Gautam Vemuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gautam Vemuri', 18)}}的其他基金

Quantum State Engineering with Novel Nonlinear Interferometric Techniques
采用新型非线性干涉技术的量子态工程
  • 批准号:
    1806425
  • 财政年份:
    2018
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics in Semiconductor Lasers Due to Filtered Optical Feedback: Fundamental Issues, and Applications to Chaotic Encryption and Signal Routing
滤波光学反馈导致的半导体激光器非线性动力学:基本问题以及混沌加密和信号路由的应用
  • 批准号:
    0010092
  • 财政年份:
    2001
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant
Computational methods for pandemic-scale genomic epidemiology
大流行规模基因组流行病学的计算方法
  • 批准号:
    MR/Z503526/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Research Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Continuing Grant
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
  • 批准号:
    2348884
  • 财政年份:
    2024
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant
Developing computational methods to minimise social bias in healthcare AI
开发计算方法以尽量减少医疗保健人工智能中的社会偏见
  • 批准号:
    2868742
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Studentship
PROTACS: new computational methods and targets
PROTACS:新的计算方法和目标
  • 批准号:
    2897704
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Studentship
Novel Computational Methods for Microbiome Data Analysis in Longitudinal Study
纵向研究中微生物组数据分析的新计算方法
  • 批准号:
    10660234
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
RUI: Characterizing Valence, Temporary, and Non-valence Anions: Computational Methods and Photo-detachment Spectroscopy
RUI:表征化合价、临时和非化合价阴离子:计算方法和光分离光谱
  • 批准号:
    2303652
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Continuing Grant
Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
  • 批准号:
    2317172
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了