Enabling Precision Neutrino Physics with DUNE: Development of Design and Production Plan for DUNE TPC Wire Planes
利用 DUNE 实现精密中微子物理:制定 DUNE TPC 线平面的设计和生产计划
基本信息
- 批准号:1806858
- 负责人:
- 金额:$ 162万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the major intellectual achievements of the 20th century was the development of the Standard Model (SM) of particle physics. This model succeeded in classifying all of the elementary particles known at the time into a hierarchy of groups having similar quantum properties. The validity of this model to date was confirmed by the discovery of the Higgs boson at the Large Hadron Collider at CERN. However, the Standard Model as it currently exists leaves open many questions about the universe, including such fundamental questions as to why the Higgs mass has the value it has and why there is no antimatter in the universe. One of the primary areas to search for answers to these and other open questions about the universe, how it came to be, and why it is the way it is, is to focus on a study of the properties of neutrinos and to use what we know and can learn about neutrinos as probes of science Beyond the Standard Model (BSM). The Standard Model predicted that there were three different kinds of neutrinos, all massless, that were distinguishable through the different interactions that they undergo whenever they interact with matter. But recent measurements have totally changed our picture of neutrinos. We now know that neutrinos do have a mass and because they do, they can actually change from one type to another. Detailed measurements of these changes as well as others form one of the most promising ways to probe for new physics beyond the Standard Model. The Deep Underground Neutrino Experiment (DUNE) will make comprehensive measurements of neutrino and anti-neutrino oscillations to investigate neutrino CP violation, determine the ordering of the neutrino mass eigenstates, and perform precision tests of the neutrino Standard Model. DUNE will take advantage of both an accelerator-based neutrino beam from Fermilab and be sensitive to extra-terrestrial neutrinos, including those from supernova explosions. DUNE's massive detector, a 40-kton Liquid Argon Time Projection Chamber (LAr-TPC) System, will both enable these precision measurements in neutrino physics and astrophysics as well as extend the sensitivity in the search for nucleon decay. The LAr-TPC System will be divided into four 10-kton modules. At the heart of two of these large modules are wire chamber planes called Anode Plane Assemblies (APA) which record the signatures of particles propagating in the argon and provide high resolution images of neutrino interactions. The groups leading this planning project, funded in part through earlier investments from the NSF, have led the development of wire chamber planes for LAr-TPC experiments laying the groundwork for DUNE. These groups will now develop a construction strategy, methodology and plan to construct half of the APAs needed for the first two 10-kton modules of DUNE. It is envisioned that 2-3 APA "factories" would be built at university sites that have the technical facilities and infrastructure required to host the APA production lines. These multiple regional factories would allow for direct participation by many collaborating university groups. Ultimately, developing and then operating an APA construction program would provide excellent training opportunities for postdoctoral researchers, graduate students, and undergraduate students. It is anticipated that the project would interest and engage a diverse group of undergraduate students at each of the construction sites.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
20世纪的主要智力成就之一是粒子物理标准模型(SM)的发展。这个模型成功地将当时已知的所有基本粒子归入具有相似量子性质的群组的层次结构中。在欧洲核子研究中心的大型强子对撞机上发现的希格斯玻色子证实了这个模型到目前为止的有效性。然而,目前存在的标准模型留下了许多关于宇宙的问题,包括为什么希格斯质量具有它的价值,为什么宇宙中没有反物质等基本问题。寻找这些和其他关于宇宙的公开问题的答案,它是如何形成的,为什么它是这样的,主要领域之一是专注于中微子的性质的研究,并使用我们所知道和可以了解的中微子作为超越标准模型(BSM)的科学探测器。标准模型预测,有三种不同类型的中微子,它们都是无质量的,可以通过它们与物质相互作用时经历的不同相互作用来区分。但最近的测量完全改变了我们对中微子的看法。我们现在知道中微子确实有质量,因为它们有质量,所以它们实际上可以从一种类型变成另一种类型。对这些变化以及其他变化的详细测量形成了探索超越标准模型的新物理的最有前途的方法之一。深井中微子实验(DUNE)将对中微子和反中微子振荡进行全面测量,以调查中微子CP破坏,确定中微子质量本征态的顺序,并对中微子标准模型进行精确测试。沙丘将利用费米实验室基于加速器的中微子光束,并对地外中微子敏感,包括来自超新星爆炸的中微子。沙丘的巨型探测器,一个40千吨的液体氩时间投影室(LAR-TPC)系统,将使中微子物理和天体物理中的这些精确测量成为可能,并扩大寻找核子衰变的灵敏度。Lar-TPC系统将分为四个10千吨级的模块。其中两个大型模块的核心是被称为阳极面组件(APA)的线室平面,它记录了在Ar中传播的粒子的特征,并提供了中微子相互作用的高分辨率图像。领导这一规划项目的小组部分来自美国国家科学基金会的早期投资,他们领导了Lar-TPC实验用钢丝室平面的开发,为沙丘奠定了基础。这些小组现在将制定建设战略、方法和计划,建造头两个10公里重的沙丘模块所需的一半的APA。据设想,2-3个APA“工厂”将建在拥有APA生产线所需的技术设施和基础设施的大学地点。这些多个地区的工厂将允许许多合作的大学团体直接参与。最终,开发并运营一个APA建设项目将为博士后研究人员、研究生和本科生提供极好的培训机会。预计该项目将在每个建筑工地吸引和吸引不同的本科生群体。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Blucher其他文献
Edward Blucher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Blucher', 18)}}的其他基金
Neutrino Physics at the University of Chicago
芝加哥大学中微子物理学
- 批准号:
2209601 - 财政年份:2022
- 资助金额:
$ 162万 - 项目类别:
Standard Grant
Neutrino Physics at the University of Chicago
芝加哥大学中微子物理学
- 批准号:
1913983 - 财政年份:2019
- 资助金额:
$ 162万 - 项目类别:
Continuing Grant
Research in Experimental Neutrino Physics
实验中微子物理研究
- 批准号:
1506373 - 财政年份:2015
- 资助金额:
$ 162万 - 项目类别:
Continuing Grant
Student Support for Neutrino Physics Summer School
中微子物理暑期学校的学生支持
- 批准号:
0948463 - 财政年份:2009
- 资助金额:
$ 162万 - 项目类别:
Standard Grant
Construction of a Muon Tagging System for the Double Chooz Neutrino Experiment
双选择中微子实验μ介子标记系统的构建
- 批准号:
0707282 - 财政年份:2007
- 资助金额:
$ 162万 - 项目类别:
Continuing Grant
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/2 - 财政年份:2024
- 资助金额:
$ 162万 - 项目类别:
Fellowship
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
- 批准号:
ST/W003880/1 - 财政年份:2022
- 资助金额:
$ 162万 - 项目类别:
Fellowship
Precision Ultra-High Energy Neutrino Astrophysics and New Signatures Enabled by a Complete Treatment of Birefringence in Antarctic Ice
精密超高能中微子天体物理学和通过彻底处理南极冰中双折射而实现的新特征
- 批准号:
2209588 - 财政年份:2022
- 资助金额:
$ 162万 - 项目类别:
Standard Grant
Precision Measurement of Coherent Elastic Neutrino-Nucleus Scattering from Reactor Antineutrinos
反应堆反中微子相干弹性中微子核散射的精密测量
- 批准号:
2209579 - 财政年份:2022
- 资助金额:
$ 162万 - 项目类别:
Continuing Grant
Precision Measurements of Neutrino Oscillations and Interactions
中微子振荡和相互作用的精确测量
- 批准号:
2111053 - 财政年份:2021
- 资助金额:
$ 162万 - 项目类别:
Continuing Grant
Precision Neutrino Oscillation Physics with JUNO
使用 JUNO 进行精密中微子振荡物理学
- 批准号:
2111546 - 财政年份:2021
- 资助金额:
$ 162万 - 项目类别:
Continuing Grant
CAREER: A Keystone for Precision Neutrino Physics: Multi-Target Neutrino-Nucleus Cross Section Measurements with the Fermilab Short-Baseline Neutrino Program
职业:精密中微子物理的基石:利用费米实验室短基线中微子计划进行多目标中微子核横截面测量
- 批准号:
2047665 - 财政年份:2021
- 资助金额:
$ 162万 - 项目类别:
Continuing Grant
Precision measurements of neutrino interaction in the MicroBooNE detector
MicroBooNE 探测器中中微子相互作用的精确测量
- 批准号:
2462477 - 财政年份:2020
- 资助金额:
$ 162万 - 项目类别:
Studentship
Precision neutrino physics at the Fermilab short-baseline programme
费米实验室短基线计划的精密中微子物理
- 批准号:
2461949 - 财政年份:2020
- 资助金额:
$ 162万 - 项目类别:
Studentship
Precision Hadron Production Measurements to Suppress Systematic Errors in Neutrino Fluxes
精密强子产生测量可抑制中微子通量的系统误差
- 批准号:
19H00684 - 财政年份:2019
- 资助金额:
$ 162万 - 项目类别:
Grant-in-Aid for Scientific Research (A)