NSF-BSF: Synthesis and Analysis of Novel Microresonator Combs
NSF-BSF:新型微谐振器梳的合成与分析
基本信息
- 批准号:1807272
- 负责人:
- 金额:$ 35.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Frequency comb sources are frequency rulers that make it possible to measure frequencies with phenomenal accuracy - equivalent to measuring a shift in the distance between the Earth and the Sun of 100 times the width of an atom. Frequency combs are used in basic physics experiments, for chemical, environmental, and medical sensing, for time and frequency transfer, and in radar systems. The first frequency combs were made from bulky laser systems, and the discovery in the past decade that microresonators (mm-size optical devices) can produce frequency combs has led to an outpouring of scientific interest. However, almost all frequency combs use short optical pulses called solitons. Solitons in microresonators are hard to obtain, waste much of the optical pump power that is used to generate them, and are thermally unstable. We will study novel waveforms that have the potential to solve these problems. In our theoretical studies, we will use a unique set of computational tools that we developed and that to our knowledge no other research group has at present. These tools make it possible to rapidly determine how these waveforms can be obtained and to determine their robustness in the presence of noise and thermal effects. That allows us to move away from the "cut-and-try" experimental work that has mostly limited studies to date to single solitons. The computational tools will be made generally available via the Web. We expect that they will be useful in other systems, including economic and biological systems, as well as other optical systems. To carry out this theoretical work and test these ideas experimentally, we have assembled a team that includes scientists at the University of Maryland Baltimore County (UMBC), the Hebrew University in Jerusalem, Purdue University, and the French Centre National de Recherche Scientifique. UMBC is a minority-serving institution with a reputation for diversity and educational innovation, and we anticipate involving undergraduate as well as graduate students in this research. All our students will benefit from the strong theoretical-experimental collaboration and the opportunity to interact with students and faculty from different countries.The principal technical goal of this research is to study the potential of waveforms other than single solitons for creating frequency combs in microresonators. We will focus on cnoidal waves and soliton molecules. Preliminary work indicates that cnoidal waves have a large region of stability, can be simply accessed by raising the pump power, are robust, and can have large bandwidths. Cnoidal waves and dark soliton molecules can be obtained in the normal dispersion regime, in contrast to single (bright) solitons, which increases the number of material systems in which frequency combs can be obtained. To achieve this goal, we will use a set of computational tools, based on dynamical systems theory and statistical mechanics, that we have developed and will continue to develop. These tools will allow us to determine where in the system parameter space the alternative waveforms are accessible, stable, and robust in the presence of noise. A secondary goal of this research is to demonstrate the utility of these theoretical tools and make them widely available to the research community. Having identified where in the parameter space stable waveforms exists, we will work with our experimental collaborators at the CNRS and Purdue to test and refine the theoretical predictions, taking advantage of their existing experimental infrastructure, which is based on crystalline resonators and silicon-nitride resonators, respectively. We anticipate an iterative process in which the theoretical work leads to new experiments, and the experiments guide the direction of the theoretical work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
频率梳状源是频率尺子,它使得以惊人的精度测量频率成为可能--相当于测量地球与太阳之间的距离偏移100倍于一个原子的宽度。频率梳用于基础物理实验,用于化学、环境和医学传感,用于时间和频率传输,以及用于雷达系统。第一批频率梳是由体积庞大的激光系统制成的,在过去十年中,微谐振器(毫米尺寸的光学设备)可以产生频率梳的发现引发了科学兴趣的涌现。然而,几乎所有的频率梳都使用称为孤子的短光脉冲。微谐振器中的孤子很难获得,浪费了用于产生孤子的大部分光泵功率,而且热不稳定。我们将研究有可能解决这些问题的新波形。在我们的理论研究中,我们将使用我们开发的一套独特的计算工具,据我们所知,目前其他研究小组还没有这种工具。这些工具可以快速确定如何获得这些波形,并确定它们在存在噪声和热效应时的稳健性。这使得我们可以摆脱“试探性”的实验工作,到目前为止,这种工作主要局限于单孤子的研究。这些计算工具将通过网络普遍提供。我们预计它们将在其他系统中有用,包括经济和生物系统,以及其他光学系统。为了进行这项理论工作并对这些想法进行实验测试,我们组建了一个团队,其中包括马里兰大学巴尔的摩县分校(UMBC)、耶路撒冷希伯来大学、普渡大学和法国国家科学研究中心的科学家。密歇根大学是一所为少数群体服务的机构,以多元化和教育创新著称,我们希望本科生和研究生都参与到这项研究中来。我们所有的学生都将从强大的理论和实验合作中受益,并有机会与来自不同国家的学生和教职员工互动。本研究的主要技术目标是研究在微谐振器中创建频率梳的非单孤子波形的潜力。我们将专注于椭圆波和孤子分子。初步工作表明,椭圆曲线波具有很大的稳定区,可以通过提高泵浦功率来简单地访问,并且是健壮的,并且可以具有很大的带宽。与单个(亮)孤子相比,在正常色散区可以获得椭圆波和暗孤子分子,这增加了可以获得频率梳的材料系统的数量。为了实现这一目标,我们将使用一套我们已经开发并将继续开发的基于动力系统理论和统计力学的计算工具。这些工具将使我们能够确定在存在噪声的情况下,可选波形在系统参数空间中的哪个位置是可访问的、稳定的和稳健的。这项研究的第二个目标是证明这些理论工具的实用性,并使它们广泛适用于研究界。在确定了参数空间中存在稳定波形的位置后,我们将与CNRS和普渡大学的实验合作者合作,利用他们现有的实验基础设施,分别基于晶体谐振器和氮化硅谐振器,测试和完善理论预测。我们期待着一个迭代的过程,在这个过程中,理论工作导致新的实验,实验指导理论工作的方向。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dissipative cnoidal waves (Turing rolls) and the soliton limit in microring resonators
- DOI:10.1364/optica.6.001220
- 发表时间:2019-09-20
- 期刊:
- 影响因子:10.4
- 作者:Qi, Zhen;Wang, Shaokang;Menyuk, Curtis R.
- 通讯作者:Menyuk, Curtis R.
Influence of Mode Structure on the Generation of Phononic Frequency Combs
模态结构对声子频率梳生成的影响
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Zhen Qi, Curtis R.
- 通讯作者:Zhen Qi, Curtis R.
Stability and Noise in Frequency Combs: Harnessing the Music of the Spheres
频率梳的稳定性和噪声:利用球体的音乐
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Menyuk, Curtis R.
- 通讯作者:Menyuk, Curtis R.
Deterministic access of broadband frequency combs in microresonators using cnoidal waves in the soliton crystal limit
- DOI:10.1364/oe.405655
- 发表时间:2020-11-23
- 期刊:
- 影响因子:3.8
- 作者:Qi, Zhen;Leshem, Amir;Menyuk, Curtis R.
- 通讯作者:Menyuk, Curtis R.
High-Power Frequency Combs from Periodic Waveforms in Kerr Microresonators
克尔微谐振器中周期性波形的高功率频率梳
- DOI:10.1364/iprsn.2018.jw1i.4
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kholmyansky, Dora;Gat, Omri
- 通讯作者:Gat, Omri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Curtis Menyuk其他文献
Curtis Menyuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Curtis Menyuk', 18)}}的其他基金
EAGER: Active Modelocking of Quantum Cascade Lasers
EAGER:量子级联激光器的主动锁模
- 批准号:
1242676 - 财政年份:2012
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Accurate Calculation of Bit Error Ratios in Optical Fiber Communications Systems
光纤通信系统误码率的准确计算
- 批准号:
0400535 - 财政年份:2004
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical and Computational Methods in High Data-Rate Optical Fiber Communications
合作研究:高数据率光纤通信中的数学和计算方法
- 批准号:
0101387 - 财政年份:2001
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Modelling of Long-Distance NRZ Optical Fiber Transmission
长距离 NRZ 光纤传输建模
- 批准号:
9633667 - 财政年份:1996
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
SGER: Stimulated Raman Scattering in the Transient Limit
SGER:瞬态极限受激拉曼散射
- 批准号:
9114191 - 财政年份:1991
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Solitons in Communication and Switching Systems
通信和交换系统中的孤子
- 批准号:
9113382 - 财政年份:1991
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
- 批准号:
2400200 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
- 批准号:
2401159 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 35.57万 - 项目类别:
Standard Grant