Combinatorics in Hyperbolic Geometry and Exporting Teichmuller Theory
双曲几何中的组合学和导出 Teichmuller 理论
基本信息
- 批准号:1807319
- 负责人:
- 金额:$ 16.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator plans a research program for studying Teichmuller theory, a fundamentally important topic in geometry, by way of its connections and interactions with several other mathematical disciplines. Central to the fields of geometry and topology is the study of surfaces, for example the surface of a spherical solid like a planet, or the surface of a donut or of a more complicated three dimensional solid. A key objective in Teichmuller theory is to understand all possible geometric forms that a fixed type of surface can admit. For example, an astrophysicist might be interested in cataloging all possible topographies of a hypothetical planet. The possibilities are countless: there could be hilly or mountainous terrains, highlands, valleys of varying elevations, and so forth. Miraculously, Teichmuller theory gives a way to package the entire plethora of possible topographies into one geometric object which can then be studied. The practical applications of Teichmuller theory and of its mathematical relatives abound, from computer visualization and graphics design, to evolutionary biology and genetics, and to many other important disciplines in between.In more technical detail, the principal investigator proposes a three part plan for studying Teichmuller and hyperbolic geometry, the mapping class group, and more general classes of finitely generated groups and metric spaces. First, the PI plans to develop dynamical and combinatorial tools for studying the Teichmuller space, the mapping class group, and hyperbolic 3-manifolds, and to use these tools to analyze fundamental questions at the intersection of combinatorics and dynamics, such as lattice point counting problems, and the study of hyperbolic 3-manifolds from a combinatorial perspective. For example, the PI plans to demonstrate relationships between the curve complex of a surface S and the geometry of a hyperbolic 3-manifold fibering over S, in such a way that is sensitive to the topology of the underlying surface S. Next, the PI will generalize and extend these tools to other groups and spaces, such as the outer automorphism group of the free group and the Outer space; for instance, the PI will initiate a study of metrics on moduli spaces of graphs that are inspired by the Weil-Petersson metric on Teichmuller space. Finally, the PI plans to pose analogs of counting and other types of dynamical problems in a wider class of groups and of spaces, and use the generalized tools to attack these questions in their respective contexts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
首席研究员计划研究Teichmuller理论的研究计划,这是几何学中一个非常重要的课题,通过与其他几个数学学科的联系和相互作用。几何学和拓扑学领域的中心是研究表面,例如像行星这样的球形固体的表面,或者甜甜圈或更复杂的三维固体的表面。Teichmuller理论的一个关键目标是理解一个固定类型的表面可以容纳的所有可能的几何形式。例如,一个天体物理学家可能对编目一个假设行星的所有可能地形感兴趣。可能性是无数的:可能有丘陵或山地地形,高地,不同海拔的山谷,等等。不可思议的是,泰希穆勒理论提供了一种方法,可以将所有可能的拓扑结构打包成一个几何对象,然后进行研究。Teichmuller理论及其数学亲属的实际应用比比皆是,从计算机可视化和图形设计,进化生物学和遗传学,以及许多其他重要学科之间。在更多的技术细节,首席研究员提出了一个三部分的计划,研究Teichmuller和双曲几何,映射类组,更一般的类的生成群和度量空间。首先,PI计划开发动力学和组合工具,用于研究Teichmuller空间,映射类群和双曲3-流形,并使用这些工具来分析组合学和动力学交叉点的基本问题,例如格点计数问题,以及从组合的角度研究双曲3-流形。例如,PI计划演示曲面S的曲线复形与覆盖在S上的双曲三维流形的几何之间的关系,以这种方式对底层曲面S的拓扑结构敏感。 接下来,PI将把这些工具推广和扩展到其他群和空间,例如自由群的外自同构群和外空间;例如,PI将开始研究图的模空间上的度量,这些度量受到Teichmuller空间上的Weil-Petersson度量的启发。最后,PI计划在更广泛的群体和空间中提出计数和其他类型的动力学问题的类似物,并使用通用工具在各自的背景下攻击这些问题。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tarik Aougab其他文献
Building hyperbolic metrics suited to closed curves and applications to lifting simply
构建适合闭合曲线的双曲指标以及简单提升的应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tarik Aougab;Jonah Gaster;Priyam Patel;Jenya Sapir - 通讯作者:
Jenya Sapir
Middle recurrence and pulling back stability
中度复发,拉回稳定
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tarik Aougab;Matthew Gentry Durham;Samuel J. Taylor - 通讯作者:
Samuel J. Taylor
Uniform hyperbolicity of the graphs of curves
- DOI:
10.2140/gt.2013.17.2855 - 发表时间:
2012-12 - 期刊:
- 影响因子:2
- 作者:
Tarik Aougab - 通讯作者:
Tarik Aougab
Isometry groups of infinite-genus hyperbolic surfaces
无限亏格双曲曲面的等距群
- DOI:
10.1007/s00208-021-02164-z - 发表时间:
2020 - 期刊:
- 影响因子:1.4
- 作者:
Tarik Aougab;Priyam Patel;N. Vlamis - 通讯作者:
N. Vlamis
A note on an effective characterization of covers with an application to higher rank representations
关于覆盖层的有效表征及其应用于更高等级表示的注释
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tarik Aougab;Max Lahn;Marissa Loving;N. Miller - 通讯作者:
N. Miller
Tarik Aougab的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tarik Aougab', 18)}}的其他基金
Combinatorics in Hyperbolic Geometry and Exporting Teichmuller Theory
双曲几何中的组合学和导出 Teichmuller 理论
- 批准号:
1939936 - 财政年份:2019
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
相似海外基金
Hyperbolic Geometry and Gravitational Waves
双曲几何和引力波
- 批准号:
2309084 - 财政年份:2023
- 资助金额:
$ 16.06万 - 项目类别:
Continuing Grant
Topics in Non-Euclidean / Hyperbolic Geometry
非欧几里得/双曲几何主题
- 批准号:
2890480 - 财政年份:2023
- 资助金额:
$ 16.06万 - 项目类别:
Studentship
Arithmetic Applications of Definable and Hyperbolic Geometry
可定义几何和双曲几何的算术应用
- 批准号:
RGPIN-2019-04178 - 财政年份:2022
- 资助金额:
$ 16.06万 - 项目类别:
Discovery Grants Program - Individual
The Jones Polynomial and Hyperbolic Geometry of Surfaces
曲面的琼斯多项式和双曲几何
- 批准号:
2203255 - 财政年份:2022
- 资助金额:
$ 16.06万 - 项目类别:
Continuing Grant
The Geometry of Hyperbolic 3-Manifolds
双曲3流形的几何
- 批准号:
2202718 - 财政年份:2022
- 资助金额:
$ 16.06万 - 项目类别:
Continuing Grant
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
- 批准号:
2203334 - 财政年份:2022
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant
Geometry and dynamics of systems with a hyperbolic flavor
双曲线系统的几何和动力学
- 批准号:
RGPIN-2017-04592 - 财政年份:2022
- 资助金额:
$ 16.06万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolic manifolds from a contact geometry perspective
从接触几何角度看双曲流形
- 批准号:
2750796 - 财政年份:2022
- 资助金额:
$ 16.06万 - 项目类别:
Studentship
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2022
- 资助金额:
$ 16.06万 - 项目类别:
Discovery Grants Program - Individual
Conference on Complex Hyperbolic Geometry and Related Topics
复杂双曲几何及相关主题会议
- 批准号:
2225583 - 财政年份:2022
- 资助金额:
$ 16.06万 - 项目类别:
Standard Grant