The Jones Polynomial and Hyperbolic Geometry of Surfaces
曲面的琼斯多项式和双曲几何
基本信息
- 批准号:2203255
- 负责人:
- 金额:$ 26.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project focuses on important, fundamental problems in quantum topology and its connection to classical topology. Quantum topology studies and classifies invariants of three- and four-dimensional spaces and knotted circles in them. These objects appear naturally in nature, for example in the theory of DNA and in physics, and have many applications. Quantum topology results and methods might help in constructing theoretical and practical models of quantum computation, which, if realized, would be revolutionary for many industries, solving previously computationally impossible problems. The project is interdisciplinary and employs methods in topology, geometry, algebra, number theory, analysis, quantum field theory, and combinatorics. The project involves mentoring and training of students and postdocs, and outreach. The project has three main topics. The first is the AJ conjecture which connects the colored Jones polynomials and colored HOMFLYPT polynomials to the fundamental group of knots. The second develops and studies hyperbolic topological quantum field theory, with the ultimate goal to better understand and make progress in the volume conjecture and solve the AJ conjecture. The third studies the growth of homology in finite coverings of 3-manifolds, with connections to dynamics of pseudo-Anosov maps on surfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目侧重于量子拓扑中的重要基础问题及其与经典拓扑的联系。量子拓扑学研究并分类了三维和四维空间的不变量以及其中的打结圆。这些物体在自然界中自然出现,例如在DNA理论和物理学中,并且有许多应用。量子拓扑的结果和方法可能有助于构建量子计算的理论和实践模型,如果实现,将对许多行业具有革命性意义,解决以前在计算上不可能解决的问题。该项目是跨学科的,采用了拓扑、几何、代数、数论、分析、量子场论和组合学等方法。该项目包括对学生和博士后的指导和培训,以及外展。该项目有三个主要主题。第一个是AJ猜想,它将有色的琼斯多项式和有色的HOMFLYPT多项式与结的基本群联系起来。二是发展和研究双曲拓扑量子场论,最终目的是更好地理解和推进体积猜想和解决AJ猜想。第三章研究了3流形有限覆盖上的同调生长,并与曲面上伪anosov映射的动力学联系起来。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thang Le其他文献
Out-of-plane soil-structure interaction: A tapered shear wall on flexible semi-circular foundation excited by plane SH waves
- DOI:
10.1016/j.soildyn.2021.106671 - 发表时间:
2021-07-01 - 期刊:
- 影响因子:
- 作者:
Thang Le;Vincent W. Lee;Mihailo D. Trifunac - 通讯作者:
Mihailo D. Trifunac
Development of 3-DOF Force Feedback System Using Spherical Arm Mechanism and MR Brakes
使用球臂机构和磁流变制动器的三自由度力反馈系统的开发
- DOI:
10.18178/ijmerr.9.2.170-176 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hung Q. Nguyen;Thang Le;D. N. Nguyen;Tuan D. Le;T. V. Lang;Thang Ngo - 通讯作者:
Thang Ngo
A unified quantum SO(3) invariant for rational homology 3-spheres
- DOI:
10.1007/s00222-010-0304-5 - 发表时间:
2010-12-22 - 期刊:
- 影响因子:3.600
- 作者:
Anna Beliakova;Irmgard Bühler;Thang Le - 通讯作者:
Thang Le
Search engine optimization poisoning: A cybersecurity threat analysis and mitigation strategies for small and medium-sized enterprises
搜索引擎优化中毒:中小企业网络安全威胁分析与缓解策略
- DOI:
10.1016/j.techsoc.2024.102470 - 发表时间:
2024 - 期刊:
- 影响因子:9.2
- 作者:
Tran Duc Le;Thang Le;Sylvestre Uwizeyemungu - 通讯作者:
Sylvestre Uwizeyemungu
A Study of Musculoskeletal Disease in Two Chronic Hemodialysis Populations and Its Impact on Quality of Life
两种慢性血液透析人群的肌肉骨骼疾病及其对生活质量的影响的研究
- DOI:
10.1097/rhu.0b013e3181c4c57f - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Sheherbano Mehdi;P. Prete;Mehrtash Hashimzadeh;Antony Hou;Thang Le;Gaurang R Shah;Brian S Andrews - 通讯作者:
Brian S Andrews
Thang Le的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thang Le', 18)}}的其他基金
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
- 批准号:
1912700 - 财政年份:2019
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
The Geometry and Topology of the Jones Polynomial
琼斯多项式的几何和拓扑
- 批准号:
1811114 - 财政年份:2018
- 资助金额:
$ 26.39万 - 项目类别:
Continuing Grant
Swiss Knots 2011: Knot Theory and Algebra
瑞士结 2011:结理论和代数
- 批准号:
1105703 - 财政年份:2011
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
Invariants of Links and 3-manifolds
链接和 3 流形的不变量
- 批准号:
0437552 - 财政年份:2004
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
Invariants of Links and 3-manifolds
链接和 3 流形的不变量
- 批准号:
0204158 - 财政年份:2002
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
Invariants of Links and 3-Manifolds, Their Properties and Topology
链接和 3-流形的不变量、它们的性质和拓扑
- 批准号:
9971350 - 财政年份:1999
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
Mathematical Sciences: Quantum and Finite Type Invariants of Links in 3-Manifolds, Quasicrystals
数学科学:3-流形、准晶体中链接的量子和有限型不变量
- 批准号:
9626404 - 财政年份:1996
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
相似海外基金
Polynomial Interpolation, Symmetric Ideals, and Lefschetz Properties
多项式插值、对称理想和 Lefschetz 属性
- 批准号:
2401482 - 财政年份:2024
- 资助金额:
$ 26.39万 - 项目类别:
Continuing Grant
New Frontiers in Large-Scale Polynomial Optimisation
大规模多项式优化的新领域
- 批准号:
DE240100674 - 财政年份:2024
- 资助金额:
$ 26.39万 - 项目类别:
Discovery Early Career Researcher Award
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
- 批准号:
2338091 - 财政年份:2024
- 资助金额:
$ 26.39万 - 项目类别:
Continuing Grant
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
- 批准号:
RGPIN-2020-04276 - 财政年份:2022
- 资助金额:
$ 26.39万 - 项目类别:
Discovery Grants Program - Individual
CNS Core: Small: Schedulability Analysis of Safety-Critical Real-Time Systems: Beyond Pseudo-polynomial Time Algorithms
CNS 核心:小型:安全关键实时系统的可调度性分析:超越伪多项式时间算法
- 批准号:
2141256 - 财政年份:2022
- 资助金额:
$ 26.39万 - 项目类别:
Standard Grant
New Polynomial GCD and Factorization Algorithms and Software for Maple
Maple 的新多项式 GCD 和因式分解算法和软件
- 批准号:
576162-2022 - 财政年份:2022
- 资助金额:
$ 26.39万 - 项目类别:
Alliance Grants
Global geometry of families of polynomial vector fields
多项式向量场族的全局几何
- 批准号:
RGPIN-2020-05145 - 财政年份:2022
- 资助金额:
$ 26.39万 - 项目类别:
Discovery Grants Program - Individual
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
- 批准号:
RGPIN-2018-06534 - 财政年份:2022
- 资助金额:
$ 26.39万 - 项目类别:
Discovery Grants Program - Individual