: In situ observation of atomic scale twinning Process in HCP Crystals
: 原位观察 HCP 晶体原子级孪生过程
基本信息
- 批准号:1808046
- 负责人:
- 金额:$ 43.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYPlastic deformation plays a crucial role in mechanical behaviors of crystals. Particularly, where the atoms are arranged in the pattern of hexagons, called hexagonal close packed metals and alloys such as magnesium or titanium-based alloys, twinning (two separate crystals having the same structure in a symmetrical manner) is an important type of plastic deformation, which critically influences the mechanical behaviors such as ductility, strength, work hardening, and fracture. As such, twinning has to be understood and controlled for designing and processing the hexagonal close packed metals and alloys. However, this has been impeded by the elusive understanding of atomic scaled mechanisms of twinning processes in the metals. Despite tremendous research efforts, for decades, how atom movements influence the mechanism of twinning remains poorly understood. The proposed research will employ high resolution transmission electron microscopy to investigate atomic-scale twinning processes in the materials, providing in-depth understanding on the role of atom movement in twinning of complex crystal structures. The project will provide important guidance for twinning-based alloy design and processing for achieving superior mechanical properties. Thereby, it will advance the application of light metal-based structures. The program will integrate research and education through training graduate/undergraduate students with diverse demographic backgrounds (particularly, female and minority) and their participation in national laboratories as well as outreach to elementary school through Pittsburgh Carnegie Science Museum.TECHNICAL SUMMARYTwinning plays a crucial role in mechanical behaviors of crystals. Particularly, in hexagonal close packed (HCP) metals and alloys, twinning, in addition to dislocation slip, can be profusely activated and critically influences their ductility, strength, work hardening, texture formation and fracture, primarily because twinning can carry deformation along the c axis of the HCP crystal where dislocation plasticity is limited. As such, twinning has to be controlled for designing and processing HCP alloys with improved mechanical properties. However, this has been impeded by the elusive understanding of atomic scaled mechanisms of twinning nucleation and growth in HCP crystals. In twinning, a part of the parent lattice is reoriented and the product lattice is mirrored by the parent about the twinning plane. Classically, such a lattice reorientation is achieved by a homogeneous simple shear which carries all or a fraction of the lattice points to the twin. The shear is mediated by coordinated movement of twinning dislocations on the twinning plane. The classical description of deformation twinning has been validated extensively in cubic structures. A significant difference in twinning of double-lattice structures, such as HCP, is that a twinning shear cannot carry all the parent lattice points to the twin positions. As a result, additional atomic movements, called shuffles, are required to accomplish twinning. Despite tremendous research efforts, for decades, how atom shuffles influence the mechanism of twinning remains poorly understood. Atomically-resolved direct experimental investigation are necessary for exploring the actual atomic shuffle and shear during twinning nucleation and growth, and hence obtaining a fundamental understanding on twinning mechanisms in HCP crystals. The proposed research will employ state-of-the-art in situ high resolution transmission electron microscopy (HRTEM) to investigate atomic-scale twinning processes in HCP crystals, such as twinning nucleation, growth and pertinent transformations as well as the orientation-dependent competition between dislocation plasticity and twinning at atomic resolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
塑性变形在晶体的力学行为中起着至关重要的作用。特别地,在原子以六边形图案排列的情况下,称为六方密堆积金属和合金,例如镁或钛基合金,孪晶(以对称方式具有相同结构的两个单独晶体)是一种重要类型的塑性变形,其严重影响机械行为,例如延展性、强度、加工硬化和断裂。因此,必须理解和控制孪晶,以设计和加工六方密排金属和合金。然而,这一直阻碍了难以捉摸的理解原子尺度的机制,孪生过程中的金属。尽管付出了巨大的研究努力,几十年来,原子运动如何影响孪生机制仍然知之甚少。拟议的研究将采用高分辨率透射电子显微镜来研究材料中原子尺度的孪生过程,深入了解原子运动在复杂晶体结构孪生中的作用。该项目将为孪晶基合金的设计和加工提供重要的指导,以获得上级机械性能。从而推动了轻金属基结构的应用。该计划将通过培养具有不同人口背景(特别是女性和少数民族)的研究生/本科生,让他们参与国家实验室,以及通过匹兹堡卡内基科学博物馆推广到小学,将研究和教育结合起来。技术总结孪生在晶体的力学行为中起着至关重要的作用。特别是,在六方密堆积(HCP)金属和合金中,除了位错滑动之外,孪生还可以被大量激活,并严重影响它们的延展性、强度、加工硬化、纹理形成和断裂,主要是因为孪生可以携带变形。沿着HCP晶体的c轴,其中位错塑性受到限制。因此,为了设计和加工具有改进的机械性能的HCP合金,必须控制孪生。然而,这一直阻碍了难以捉摸的理解的原子尺度机制的孪生成核和生长的HCP晶体。在孪生中,父晶格的一部分被重定向,并且父晶格关于孪生平面镜像乘积晶格。传统上,这种晶格重新取向是通过均匀的简单剪切实现的,该剪切将所有或一部分晶格点带到孪晶。剪切是通过孪晶位错在孪晶面上的协调运动来介导的。形变孪晶的经典描述在立方结构中得到了广泛的验证。双晶格结构(例如HCP)的孪生中的显著差异在于孪生剪切不能将所有母晶格点携带到孪生位置。因此,需要额外的原子运动,称为洗牌,以实现孪生。尽管付出了巨大的研究努力,几十年来,原子洗牌如何影响孪生机制仍然知之甚少。原子分辨的直接实验研究是必要的,以探索实际的原子洗牌和剪切过程中的孪生成核和生长,从而获得一个基本的理解在HCP晶体中的孪生机制。拟议的研究将采用最先进的原位高分辨率透射电子显微镜(HRTEM)来研究HCP晶体中的原子尺度孪生过程,如孪生成核,增长和相关的转变以及方向-原子分辨率下位错塑性和孪晶之间的依赖竞争。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing shear-coupled migration mechanism of a mixed tilt-twist grain boundary at atomic scale
- DOI:10.1016/j.actamat.2023.119237
- 发表时间:2023-08
- 期刊:
- 影响因子:9.4
- 作者:Zheng Fang;Boyang Li;Susheng Tan;S. Mao;Guofeng Wang
- 通讯作者:Zheng Fang;Boyang Li;Susheng Tan;S. Mao;Guofeng Wang
Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals
- DOI:10.1038/s41467-020-16351-0
- 发表时间:2020-05-18
- 期刊:
- 影响因子:16.6
- 作者:He, Yang;Li, Bin;Mao, Scott X.
- 通讯作者:Mao, Scott X.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guofeng Wang其他文献
Spatiotemporal Patterns and Influencing Factors of Agriculture Methane Emissions in China
中国农业甲烷排放时空格局及影响因素
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Guofeng Wang;Pu Liu;Jinmiao Hu;Fan Zhang - 通讯作者:
Fan Zhang
Fabrication of noncovalently functionalized brick-like beta-cyclodextrins/graphene composite dispersions with favorable stability
具有良好稳定性的非共价功能化砖状β-环糊精/石墨烯复合分散体的制备
- DOI:
10.1039/c3ra45666h - 发表时间:
2013 - 期刊:
- 影响因子:3.9
- 作者:
Wei Zhou;Wei Li;Ying Xie;Lei Wang;Kai Pan;Guohui Tian;Mingxia Li;Guofeng Wang;Yang Qu;Honggang Fu - 通讯作者:
Honggang Fu
Force based tool wear monitoring system for milling process based on relevance vector machine
基于相关向量机的铣削过程中基于力的刀具磨损监测系统
- DOI:
10.1016/j.advengsoft.2014.02.002 - 发表时间:
2014-05 - 期刊:
- 影响因子:4.8
- 作者:
Guofeng Wang;Yinwei Yang;Qinglu Xie;Yanchao Zhang - 通讯作者:
Yanchao Zhang
cDNA cloning and complete primary structures of myosin heavy chains from spear squid and cuttlefish
矛乌贼和墨鱼肌球蛋白重链的 cDNA 克隆和完整一级结构
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Guofeng Wang;Shugo Watabe;Yoshihiro Ochiai - 通讯作者:
Yoshihiro Ochiai
Confrontation, Competition, or Cooperation? The China–US Relations Represented in China Daily’s Coverage of Climate Change (2010–2019)
《中国日报》气候变化报道中的中美关系(2010-2019)
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xiaoli Fu;Guofeng Wang - 通讯作者:
Guofeng Wang
Guofeng Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guofeng Wang', 18)}}的其他基金
Collaborative Research: Coordinated In-situ Dynamic Experiments and Atomistic Modeling of Surface Segregation in Alloys
合作研究:合金表面偏析的协调原位动态实验和原子建模
- 批准号:
1905572 - 财政年份:2019
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
Collaborative Research: Designing Nitrogen Coordinated Single Atomic Metal Electrocatalysts for Selective CO2 Reduction to CO
合作研究:设计氮配位单原子金属电催化剂用于选择性将 CO2 还原为 CO
- 批准号:
1804534 - 财政年份:2018
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
In-situ Atomic-Scale Observation on Interface Formation and Friction
界面形成和摩擦的原位原子尺度观察
- 批准号:
1824816 - 财政年份:2018
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
Atomistic Mechanisms of Surface- and Interface-Mediated Creep in Small-sized Metals
小尺寸金属表面和界面介导蠕变的原子机制
- 批准号:
1760916 - 财政年份:2018
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
Understanding and Predicting Properties and Performance of Additively Manufactured Nickel-Based Superalloys
了解和预测增材制造镍基高温合金的特性和性能
- 批准号:
1662615 - 财政年份:2017
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
Atomistic Simulation Investigation on Processing-Structure-Property Relation of Magnetic Metal Alloy Nanostructures
磁性金属合金纳米结构加工-结构-性能关系的原子模拟研究
- 批准号:
1410597 - 财政年份:2014
- 资助金额:
$ 43.27万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
In-situ Atomic-Scale Observation on Interface Formation and Friction
界面形成和摩擦的原位原子尺度观察
- 批准号:
1824816 - 财政年份:2018
- 资助金额:
$ 43.27万 - 项目类别:
Standard Grant
In-situ high-resolution observation and analysis of passive film of stainless steel in aqueous solution by atomic force microscopy
不锈钢在水溶液中钝化膜原子力显微镜原位高分辨率观察与分析
- 批准号:
17K18997 - 财政年份:2017
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A study on the in situ atomic-level observation and mechanism of gas recognition behavior exhibited by organic crystals
有机晶体气体识别行为的原位原子级观测及机理研究
- 批准号:
17K05833 - 财政年份:2017
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
In-situ observation by frequency modulation atomic force microscope: Remarkable improvement of charging characteristics of lead battery
调频原子力显微镜原位观察:铅电池充电特性显着改善
- 批准号:
16K14099 - 财政年份:2016
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Atomic level and in-situ observation of battery-related materials by environmental high-voltage electron microscopy
环境高压电子显微镜对电池相关材料的原子水平和原位观察
- 批准号:
26246006 - 财政年份:2014
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
High resolution in-situ observation and analysis of atomic behavior in gold nanorods induced by irradiation with infrared laser pulses
红外激光脉冲辐照诱导金纳米棒原子行为的高分辨率原位观察和分析
- 批准号:
25289221 - 财政年份:2013
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
In-situ and atomic-scale observation of nano-scale ferroelectric domain structure
纳米级铁电畴结构的原位和原子级观察
- 批准号:
23760632 - 财政年份:2011
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Combined electron microscopy for in-situ direct atomistic observation of surface dynamics
用于表面动力学原位直接原子观察的组合电子显微镜
- 批准号:
14350018 - 财政年份:2002
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of In-Situ Surface Observation System with an Atomic Resolution under Tensile Stress by Atomic Force Microscope
原子力显微镜拉应力下原子分辨率原位表面观测系统的研制
- 批准号:
13450043 - 财政年份:2001
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Nano-Characterization for Apatite Growth Surface
磷灰石生长表面的纳米表征研究
- 批准号:
12450271 - 财政年份:2000
- 资助金额:
$ 43.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)