Superchiral Light Generation on Achiral Substrates for High Sensitive Detection of Chiral Molecules
非手性基底上的超手性光产生用于手性分子的高灵敏度检测
基本信息
- 批准号:1808045
- 负责人:
- 金额:$ 35.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chirality is a ubiquitous property of life, found at many levels of biological systems from left-handed amino acids to right-handed glucose. It gives rise to the inherent chirality to DNAs, proteins and more, which remained hitherto unexplored due to the unavailability of precise characterization techniques. These chiral biomolecules can be present in both handed symmetries with undistinguishable physical properties, such as density, molecular weight or electronic and vibrational transitions frequencies making them almost impossible to differentiate with common spectroscopic techniques. Here a unique achiral plasmonic surface is proposed, which outperforms previous approaches. In the preliminary work chiral molecule detection sensitivity that is four orders of magnitude higher compared to the conventional technique, but without the extensive and tedious sample preparation and at much lower sample volume, is demonstrated. Pharmacological and toxicological characterization of chiral molecules plays a crucial role in the pharmaceutical drug industry and FDA approval process. The proposed project will also serve to train graduate students in nanolithography and device fabrication. Based on these attributes the proposed novel molecular chirality detection scheme has high potential to generate commercial interests and can become real world sensing technique in near future.Technical: The proposed unique cavity-coupled achiral plasmonic surface outperforms previous approaches in the following aspects: It does not have geometrical chirality, hence no chiral signal from the substrate; It creates strong near-fields on the upper surface exposed to the target analyte; The near-field is 100% single-handed chiral and flip handedness depending only on the excitation handedness on the same substrate. Such a unique mechanism of superchiral near-field generation is possible due to the coherent interaction between degenerate plasmonic and photonic cavity modes. These attributes are exclusive compared to any previous attempts where inhomogeneous chiral near-field and structural CD diminishes chiral signal from molecules. In the preliminary studies, chiral light-matter interaction through surface enhanced vibrational circular dichroism with about four orders of magnitude enhancement in detection sensitivity compared to conventional volumetric CD (VCD) technique is demonstrated. The proposed system will permit efficient chiral-light matter interactions for the detection of vibrational molecular chirality in the MIR domain relevant for drug screening. Unlike previous demonstrations where two independent chiral substrates with opposite handedness were needed, the proposed work promises chiral near-field interaction on a single achiral plasmonic substrate paving the path towards surface enhanced chiroptical spectroscopy.The main focus of the project will be to develop a sensitive chiral compound identification technique using our achiral plasmonic substrates. The system will be benchmarked with pharmacologically significant chiral drug compounds like Ibuprofen, Thalidomide, propranolol, Albuterol, and Isoflurane. These chiral compounds will allow us to start the characterization of the system and will further expand. The pharmacological and toxicological characterization of enantiomers plays a crucial role in the pharmaceutical drug industry and FDA approval process. Therefore, there is still an active need for efficient enantiomer detection, precisely and cheaply. We strongly believe that the proposed research will allow us to overcome some of the previous challenges and enable us to develop a low cost, high throughput, high sensitive chiral molecule detection technique.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
手性是生命中普遍存在的属性,存在于从左手氨基酸到右手葡萄糖的许多生物系统中。它引起了DNA、蛋白质等的固有手性,由于精确表征技术的不可用,迄今为止尚未探索。这些手性生物分子可以以双手对称存在,具有不可区分的物理性质,例如密度,分子量或电子和振动跃迁频率,使得它们几乎不可能用普通光谱技术区分。在这里,提出了一个独特的非手性等离子体表面,它优于以前的方法。在初步工作中,手性分子检测灵敏度比传统技术高四个数量级,但没有广泛和繁琐的样品制备和低得多的样品体积,被证明。手性分子的药理学和毒理学表征在制药工业和FDA批准过程中起着至关重要的作用。拟议的项目还将用于培训纳米光刻和设备制造的研究生。基于这些特性,提出的新型分子手性检测方案具有很高的商业价值,在不久的将来可能成为真实的世界传感技术。技术要点:提出的独特的腔耦合非手性等离子体表面在以下方面优于以往的方法:它不具有几何手性,因此没有来自基底的手性信号;它在暴露于目标分析物的上表面上产生强近场;近场是100%单手手性和翻转手性,仅取决于同一基板上的激发手性。由于简并等离子体激元和光子腔模之间的相干相互作用,这种独特的超手征近场产生机制是可能的。这些属性与任何先前的尝试相比是唯一的,其中不均匀的手性近场和结构CD减少了来自分子的手性信号。在初步的研究中,手性光-物质相互作用,通过表面增强的振动圆二色性与约四个数量级的增强检测灵敏度相比,传统的体积CD(VCD)技术被证明。所提出的系统将允许有效的手性轻物质相互作用的振动分子手性的检测相关的药物筛选的MIR域。与以前的演示中,需要两个独立的手性相反的手性基板,拟议的工作承诺手性近场相互作用的单一非手性等离子体基板铺平了道路,走向表面增强chiropical spectroscopy.该项目的主要重点将是开发一个敏感的手性化合物识别技术使用我们的非手性等离子体基板。该系统将以显著的手性药物化合物(如伊诺、沙利度胺、普萘洛尔、沙丁胺醇和异氟烷)为基准。这些手性化合物将使我们能够开始系统的表征,并将进一步扩展。对映异构体的药理学和毒理学表征在制药工业和FDA批准过程中起着至关重要的作用。因此,仍然存在对精确且廉价的有效对映体检测的积极需求。我们坚信,拟议的研究将使我们能够克服一些以前的挑战,使我们能够开发一个低成本,高通量,高灵敏度的手性分子检测technology.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetoplasmons for Ultrasensitive Label-Free Biosensing
- DOI:10.1021/acsphotonics.0c01646
- 发表时间:2021-02
- 期刊:
- 影响因子:7
- 作者:S. Chandra;Jared Cozart;A. Biswas;Sang Lee;D. Chanda
- 通讯作者:S. Chandra;Jared Cozart;A. Biswas;Sang Lee;D. Chanda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debashis Chanda其他文献
Debashis Chanda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debashis Chanda', 18)}}的其他基金
Nonlinear Semiconductor-Metal Phase Transition Induced Frequency Modulation (FM) based Mid-Infrared Detection at Room Temperature
基于非线性半导体-金属相变感应调频 (FM) 的室温中红外检测
- 批准号:
2015722 - 财政年份:2020
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
Self-Assembled Angle Independent Plasmonic Displays
自组装角度无关等离激元显示器
- 批准号:
1920840 - 财政年份:2019
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
Flexible Reflective Metasurface Displays
柔性反射式超表面显示器
- 批准号:
1509729 - 财政年份:2015
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
EAGER: Unified Photon and Electron Harvesting Method for High Efficiency Thin-film Silicon Solar Cells
EAGER:高效薄膜硅太阳能电池的统一光子和电子收集方法
- 批准号:
1450806 - 财政年份:2014
- 资助金额:
$ 35.99万 - 项目类别:
Standard Grant
相似国自然基金
上调间充质干细胞LIGHT、IL-21及
Sig lec-10用于卵巢癌免疫协同增效治疗
的多模态影像学研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
LIGHT/HVEM-亮氨酸轴异常引起蜕膜基质细胞过度衰老致复发流产的机制研究
- 批准号:32370914
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
LIGHT促NLRP3炎症小体活化介导他克莫司所致肾纤维化的作用机制研究
- 批准号:82300855
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LIGHT-HVEM通路提升CAR-T细胞抗肿瘤活性的机制研究
- 批准号:82202031
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LIGHT/TNFSF14通路对缺血再灌注肾损伤中细胞铁死亡影响的实验研究
- 批准号:
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
气道上皮细胞经LIGHT/HVEM通路调控哮喘气道微环境内稳态的机制及干预研究
- 批准号:2020A151501040
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
MSCs通过免疫刺激因子LIGHT介导抗原缺失变异性乳腺癌的免疫效应及机制
- 批准号:LY21H160003
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Light助力中国科研团队提升国际影响力
- 批准号:
- 批准年份:2020
- 资助金额:6 万元
- 项目类别:专项基金项目
LIGHT(TNFSF14)诱导子痫前期的机制及其转化医学研究
- 批准号:2019JJ20035
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
Light助力中国科研团队提升国际影响力
- 批准号:
- 批准年份:2019
- 资助金额:5 万元
- 项目类别:专项基金项目
相似海外基金
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
- 批准号:
24K17589 - 财政年份:2024
- 资助金额:
$ 35.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
- 批准号:
EP/X016218/1 - 财政年份:2024
- 资助金额:
$ 35.99万 - 项目类别:
Research Grant
Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
- 批准号:
10092859 - 财政年份:2024
- 资助金额:
$ 35.99万 - 项目类别:
EU-Funded
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
- 批准号:
EP/X016749/1 - 财政年份:2024
- 资助金额:
$ 35.99万 - 项目类别:
Research Grant
Light-emitting devices for next-generation optoelectronic applications
用于下一代光电应用的发光器件
- 批准号:
DE240100417 - 财政年份:2024
- 资助金额:
$ 35.99万 - 项目类别:
Discovery Early Career Researcher Award
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/2 - 财政年份:2024
- 资助金额:
$ 35.99万 - 项目类别:
Research Grant
Next Generation Glioma Treatments using Direct Light Therapy (GlioLighT)
使用直接光疗法 (GlioLighT) 的下一代神经胶质瘤治疗
- 批准号:
10110169 - 财政年份:2024
- 资助金额:
$ 35.99万 - 项目类别:
EU-Funded
CAREER: Next-generation Rhizosphere Monitoring - Non-invasive Plant Phenotyping and Health Monitoring Using the Light-piping Properties of Plant Stems
职业:下一代根际监测 - 利用植物茎的光管特性进行非侵入性植物表型和健康监测
- 批准号:
2238365 - 财政年份:2023
- 资助金额:
$ 35.99万 - 项目类别:
Continuing Grant
Creation of the active fiber-type device by glass crystallization for next-generation light control
通过玻璃结晶创建用于下一代光控制的有源光纤型装置
- 批准号:
22KJ0290 - 财政年份:2023
- 资助金额:
$ 35.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Seeing the light: high-power visible-light generation using silicate fibre
看到光:使用硅酸盐光纤产生高功率可见光
- 批准号:
DP230100617 - 财政年份:2023
- 资助金额:
$ 35.99万 - 项目类别:
Discovery Projects














{{item.name}}会员




