Nonlinear Semiconductor-Metal Phase Transition Induced Frequency Modulation (FM) based Mid-Infrared Detection at Room Temperature

基于非线性半导体-金属相变感应调频 (FM) 的室温中红外检测

基本信息

项目摘要

PROJECT ABSTRACTProposal Title:Nonlinear Semiconductor-Metal Phase Transition Induced Frequency Modulation (FM) based Mid-Infrared Detection at Room Temperature(2015722)Non-technical AbstractThe proposed research intends to develop a novel infrared detection scheme that takes advantage of the ultrafast resistance change in self-resonant vanadium dioxide film at the semiconductor-metal transition. The optical antenna patterned composite film absorbs strongly across a wide incident angle effectively working like a light funnel. The phase transition and strong infrared absorption process results in large change in the resonance frequency. The proposed infrared detection scheme provides solutions to overcome limitations arising from thermal memory that has been a major bottleneck in operating vanadium dioxide-based detectors and promises much higher detectivity comparable to the cryogenically cooled detectors. The localized absorption and low thermal mass promise faster response compared to bulk absorption based present uncooled infrared detectors. The optical antenna pattern will be encoded in a master pattern. One such master produces 100’s of polymeric imprinting stamps, and one stamp can produce 1000’s of imprints without any noticeable pattern degradation for low cost uncooled infrared detection and imaging schemes. In this context, the proposed work is revolutionary because it promises uncooled, tunable and low-cost infrared detection. The program provides a good platform for interdisciplinary research and graduate education. The research will generate exciting scientific contents for enriching graduate and undergraduate teaching. The proposed project will also serve to train graduate students in nanolithography and optoelectronic device fabrication to prepare a qualified work force for US manufacturing industry.Technical AbstractA deterministic infrared absorption induced phase transition seems to be a plausible option for high-sensitive infrared detection at room temperature. This opens the opportunity to explore phase transition of vanadium dioxide in the context of this proposal where light localization on a nanostructured thin-film promises high-sensitive infrared detection. The optical antenna behaves as perfect light collector to couple light to the active vanadium dioxide film with ~100% efficiency where, in a unique way, the majority of the absorption takes place in the vanadium dioxide film instead of the gold optical antenna, required for high sensitive detection. This proposal will generate new scientific knowledge by (1) providing fundamental understanding of phase transition of nanostructured vanadium dioxide in presence of strong light localization, (2) the phase transition mechanism promising to create low-loss, long life-time plasmons on the interfaces of semiconductor-metal grains over a specified range of semiconductor-metal transition edge, resulting in high signal to noise ratio, (3) the detector time response measurements will shed light on the dominant phenomenon (Hubbard correlation or Peierls transition) of the phase transition of the nanostructured vanadium dioxide film, and (4) in the self-cascaded scenario, the central oscillation shifts over several kilo-hertz as the infrared radiation changes the local temperature. Tracking the change in the oscillator frequency with respect to change in local temperature, while the vanadium dioxide system is electrically biased in the phase transition edge promises higher sensitivity. All present detectors function based on amplitude modulation and the performance is limited by the amplitude noise. The proposed frequency modulation-based detection scheme offers noise resistance and higher photon detection sensitivity. Overall, frequency tunable high-sensitive infrared detection ability will add an unexplored dimension to room temperature infrared detection and imaging techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目摘要提案标题:基于非线性半导体-金属相变诱导频率调制(FM)的室温中红外探测(2015722)非技术摘要拟议的研究旨在开发一种新的红外探测方案,利用自谐振二氧化钒薄膜在超导体-金属转变时的超快电阻变化.光学天线图案化复合膜在宽入射角上强烈吸收,有效地像光漏斗一样工作。相变和强烈的红外吸收过程导致共振频率发生较大变化。所提出的红外探测方案提供了解决方案,以克服热记忆所产生的限制,这一直是一个主要的瓶颈,在操作基于二氧化钒的探测器,并承诺更高的探测率相比,低温冷却的探测器。与基于体吸收的现有非制冷红外探测器相比,局部吸收和低热质量保证了更快的响应。光学天线方向图将被编码在主方向图中。一个这样的母版产生100个聚合物压印印模,并且一个印模可以产生1000个压印,而对于低成本非冷却红外检测和成像方案没有任何明显的图案退化。 在这种情况下,所提出的工作是革命性的,因为它承诺非制冷,可调谐和低成本的红外探测。该计划为跨学科研究和研究生教育提供了良好的平台。该研究将产生令人兴奋的科学内容,丰富研究生和本科教学。该项目还将培养纳米光刻和光电器件制造的研究生,为美国制造业提供合格的劳动力。技术摘要确定性红外吸收诱导相变似乎是一个合理的选择,在室温下的高灵敏度红外检测。这打开了探索二氧化钒的相变的机会,在该提议的背景下,光定位在纳米结构薄膜上承诺高灵敏度的红外检测。光学天线作为完美的光收集器,以~100%的效率将光耦合到活性二氧化钒膜,其中,以独特的方式,大部分吸收发生在二氧化钒膜中,而不是高灵敏度检测所需的金光学天线。该提议将通过以下方式产生新的科学知识:(1)提供对存在强光局部化的纳米结构二氧化钒的相变的基本理解,(2)相变机制有望在特定范围的超导体-金属过渡边缘上在超导体-金属晶粒的界面上产生低损耗、长寿命的等离子体,从而产生高信噪比,(3)检测器时间响应测量将揭示纳米结构二氧化钒膜的相变的主要现象(哈伯德相关性或佩尔斯跃迁),以及(4)在自级联方案中,随着红外辐射改变局部温度,中心振荡偏移超过几千赫兹。跟踪振荡器频率相对于局部温度变化的变化,而二氧化钒系统在相变边缘被电偏置,这保证了更高的灵敏度。现有的检测器都是基于幅度调制的,其性能受到幅度噪声的限制。所提出的基于频率调制的检测方案提供了抗噪声性和更高的光子检测灵敏度。总的来说,频率可调的高灵敏度红外探测能力将为室温红外探测和成像技术增加一个未知的维度。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debashis Chanda其他文献

Debashis Chanda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debashis Chanda', 18)}}的其他基金

Self-Assembled Angle Independent Plasmonic Displays
自组装角度无关等离激元显示器
  • 批准号:
    1920840
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Superchiral Light Generation on Achiral Substrates for High Sensitive Detection of Chiral Molecules
非手性基底上的超手性光产生用于手性分子的高灵敏度检测
  • 批准号:
    1808045
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Flexible Reflective Metasurface Displays
柔性反射式超表面显示器
  • 批准号:
    1509729
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
EAGER: Unified Photon and Electron Harvesting Method for High Efficiency Thin-film Silicon Solar Cells
EAGER:高效薄膜硅太阳能电池的统一光子和电子收集方法
  • 批准号:
    1450806
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
  • 批准号:
    2309663
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Development of base-metal-catalyzed reactions applicable for new design of organic semiconductor materials
开发适用于有机半导体材料新设计的贱金属催化反应
  • 批准号:
    22KJ0667
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Electrically Modulated Near-field Thermophotonics with Metal-Oxide-Semiconductor Nanostructures
合作研究:金属氧化物半导体纳米结构的电调制近场热光子学
  • 批准号:
    2309664
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
RUI: Atomically flat 3D metal-2D layered semiconductor devices for electronic and optoelectronic applications
RUI:用于电子和光电应用的原子级平面 3D 金属-2D 分层半导体器件
  • 批准号:
    2151971
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
ERI: Thermal Assisted Plasmon-Plasmon interaction for active control of Electron Density Waves at Metal Semiconductor Interfaces - A Roadmap to Novel All-Optical Devices
ERI:热辅助等离子体激元-等离子体激元相互作用,用于主动控制金属半导体界面处的电子密度波 - 新型全光器件的路线图
  • 批准号:
    2138198
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
A new prepartion method for efficient metal-complex/semiconductor hybrid photocatalysts using electrochemical polymerization reactions
利用电化学聚合反应制备高效金属配合物/半导体杂化光催化剂的新方法
  • 批准号:
    22K14715
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An integrated microfluidic, metal oxide semiconductor gas sensor combined with machine learning optimization for multiplexed greenhouse gas detection
集成微流体金属氧化物半导体气体传感器与机器学习优化相结合,用于多重温室气体检测
  • 批准号:
    577115-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Alliance Grants
Metal Clusters, Metal Nanostructures, Semiconductor Nanocrystals, Single-Ion Magnets
金属簇、金属纳米结构、半导体纳米晶体、单离子磁体
  • 批准号:
    RGPIN-2021-03176
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Developing metal-organic molecular beam epitaxy (MOMBE) for chalcogenide semiconductor thin film synthesis
合作研究:开发用于硫族化物半导体薄膜合成的金属有机分子束外延(MOMBE)
  • 批准号:
    2224948
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Developing metal-organic molecular beam epitaxy (MOMBE) for chalcogenide semiconductor thin film synthesis
合作研究:开发用于硫族化物半导体薄膜合成的金属有机分子束外延(MOMBE)
  • 批准号:
    2224949
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了