Self-Assembled Angle Independent Plasmonic Displays

自组装角度无关等离激元显示器

基本信息

项目摘要

The range of colors and hues in the natural world are astonishing - from colorful flowers, birds and butterflies to underwater creatures like fish and cephalopods. The mechanisms underlying this color are as varied as the species, but can be broken into two main categories: pigmentation and structural color. In pigment producing cells, molecules absorb part of the visible spectrum while leaving the rest to be scattered back to the viewer. Structural color, on the other hand, is produced through combinations of reflection, scattering and interference within groups of cells or external nanostructures. Of these two classes, structural color serves as the primary color generating mechanism in several extremely vivid species. The key aspect of these color displays in nature is that they are consistently and uniformly formed from self-assembled nanostructures on thin, flexible and curvilinear surfaces. This in contrast to state-of-the-art manmade displays, which remain vastly rigid, brittle and based on top down processing. Here, we propose a large area, highly reproducible self-assembling technique where aluminum particles are formed on the surface through a temperature and pressure dependent thin film growth mechanism in an ultra-high vacuum electron beam evaporator. The system supports localized surface plasmons confined to the gaps between particles and the mirror which demonstrate a high degree of independence on the angle of incident light. The spectral location of the resonance can be tuned based on the size distribution of the aluminum particles and the index of the surrounding media. Light which is not absorbed by the surface is reflected back, resulting in a vivid perceived color. By integrating the self-assembled surface with liquid crystal cells, actively tunable plasmonic displays can be obtained. The process is also amiable to large-scale flexible and diffusive substrates which can result in novel plasmonic surfaces/displays with engineerable material and scattering properties. The proposed work is important for the development of low cost reflective displays on flexible substrates. The newly developed self-assembling techniques will enable large area patterning of nanostructured surfaces for low cost manufacturing. The program provides a good platform for interdisciplinary research (including integrated optics, nanofabrication and materials science and engineering) and graduate education. The research will generate exciting scientific content for enriching the PI's graduate and undergraduate teaching. The program will integrate outreach activities that span Autistic students, K-12 students and other underrepresented minorities. The PI collaborates with Orlando Science Center to informally educate the broader community and increase public awareness on displays and color generation in general.Technical: There is much to understand and develop in the field of actively tunable plasmonics. A fast response, angle independent and diffusive Liquid Crystal (LC) based tunable displays which can actively shift the color of its pixels is now possible only after years of interdisciplinary research. We plan on furthering this field through an in depth analysis of the plasmonic response of self-assembled nanostructured surfaces, LC orientation and how they influence each other. A key objective of the proposed system is to design angle independent and diffuse color surfaces based on a self-assembled resonance which doesn't depend on angle of illumination or viewing angle. While apt at producing color, these plasmonic surfaces cannot produce deep black states needed for displays due to intrinsic narrow band absorption. A vital aspect of these display devices is the ability to control the amount of light reflected from them. One possible way of achieving black and intermediate gray states is the use of liquid crystal shutter. The proposed device can readily be fabricated on flexible substrates as the low temperature fabrication process is compatible with low glassing temperature polymers such as PET.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然界中的色彩和色调范围是惊人的-从五颜六色的花朵,鸟类和蝴蝶到鱼类和头足类动物等水下生物。这种颜色背后的机制与物种一样多种多样,但可以分为两大类:色素沉着和结构色。 在产生色素的细胞中,分子吸收一部分可见光谱,而剩下的被散射回观察者。 另一方面,结构色是通过细胞组或外部纳米结构内的反射、散射和干涉的组合产生的。 在这两类中,结构色在几个非常生动的物种中作为主要的颜色生成机制。 这些彩色显示器在自然界中的关键方面是,它们是由薄,柔性和曲线表面上的自组装纳米结构一致且均匀地形成的。 这与最先进的人造显示器形成对比,人造显示器仍然非常刚性,易碎并且基于自上而下的处理。在这里,我们提出了一个大面积,高度可重复的自组装技术,其中铝颗粒形成在表面上通过温度和压力依赖的薄膜生长机制在超高真空电子束蒸发器。该系统支持局限于粒子和镜子之间的间隙,表现出高度的独立于入射光的角度的局部表面等离子体激元。可以基于铝颗粒的尺寸分布和周围介质的折射率来调谐共振的光谱位置。 没有被表面吸收的光被反射回来,从而产生生动的感知颜色。通过将自组装表面与液晶单元集成,可以获得主动可调谐等离子体显示器。 该方法还对大规模柔性和漫射衬底是友好的,这可以产生具有可工程化材料和散射性质的新型等离子体表面/显示器。 所提出的工作是重要的低成本的柔性基板上的反射式显示器的发展。新开发的自组装技术将使大面积图案化的纳米结构表面的低成本制造。该计划为跨学科研究(包括集成光学,纳米纤维和材料科学与工程)和研究生教育提供了良好的平台。这项研究将产生令人兴奋的科学内容,丰富PI的研究生和本科生教学。该计划将整合跨自闭症学生,K-12学生和其他代表性不足的少数民族的外展活动。PI与奥兰多科学中心合作,对更广泛的社区进行非正式的教育,并提高公众对显示器和颜色生成的认识。技术:在主动可调谐等离子体激元领域有很多需要了解和发展的地方。快速响应、角度独立和漫射的基于液晶(LC)的可调谐显示器,其可以主动地改变其像素的颜色,现在只有经过多年的跨学科研究才有可能。 我们计划通过深入分析自组装纳米结构表面的等离子体响应,LC取向以及它们如何相互影响来进一步推进这一领域。 所提出的系统的一个关键目标是设计角度独立的和漫射的颜色表面的基础上的自组装共振,它不依赖于照明角度或视角。 虽然易于产生颜色,但由于固有的窄带吸收,这些等离子体表面不能产生显示器所需的深黑色状态。这些显示设备的一个重要方面是能够控制从它们反射的光量。 实现黑色和中间灰色状态的一种可能方式是使用液晶快门。由于低温制造工艺与低玻璃化温度聚合物(如PET)兼容,因此拟议的器件可以很容易地在柔性基板上制造。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Angle- and Polarization-Independent Structural Color Based on Controlled Phase and Gain Margins in Ultrathin Transparent Dielectrics
  • DOI:
    10.1021/acsphotonics.3c00632
  • 发表时间:
    2023-07-20
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Cencillo-Abad,Pablo;McCormack,Sean;Chanda,Debashis
  • 通讯作者:
    Chanda,Debashis
Organic Non‐Wettable Superhydrophobic Fullerite Films
  • DOI:
    10.1002/adma.202102108
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    R. Saran;David W. Fox;L. Zhai;D. Chanda
  • 通讯作者:
    R. Saran;David W. Fox;L. Zhai;D. Chanda
Reusable Structural Colored Nanostructure for Powerless Temperature and Humidity Sensing
  • DOI:
    10.1002/adom.202300300
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Pablo Cencillo‐Abad;Pamela Mastranzo-Ortega;D. Appavoo;Tianyi Guo;L. Zhai;J. Sánchez-Mondragón;
  • 通讯作者:
    Pablo Cencillo‐Abad;Pamela Mastranzo-Ortega;D. Appavoo;Tianyi Guo;L. Zhai;J. Sánchez-Mondragón;
Plasmonic structural colour paint gets commercial attention
等离激元结构色涂料获得商业关注
  • DOI:
    10.1038/s41565-023-01469-1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Moscatelli, Alberto
  • 通讯作者:
    Moscatelli, Alberto
Self-assembled plasmonics for angle-independent structural color displays with actively addressed black states
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debashis Chanda其他文献

Debashis Chanda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debashis Chanda', 18)}}的其他基金

Nonlinear Semiconductor-Metal Phase Transition Induced Frequency Modulation (FM) based Mid-Infrared Detection at Room Temperature
基于非线性半导体-金属相变感应调频 (FM) 的室温中红外检测
  • 批准号:
    2015722
  • 财政年份:
    2020
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Superchiral Light Generation on Achiral Substrates for High Sensitive Detection of Chiral Molecules
非手性基底上的超手性光产生用于手性分子的高灵敏度检测
  • 批准号:
    1808045
  • 财政年份:
    2018
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Flexible Reflective Metasurface Displays
柔性反射式超表面显示器
  • 批准号:
    1509729
  • 财政年份:
    2015
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
EAGER: Unified Photon and Electron Harvesting Method for High Efficiency Thin-film Silicon Solar Cells
EAGER:高效薄膜硅太阳能电池的统一光子和电子收集方法
  • 批准号:
    1450806
  • 财政年份:
    2014
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant

相似海外基金

Discovery of Self-Assembled Network Phases And Metallic Nanostructures Driven by Confinement
限制驱动的自组装网络相和金属纳米结构的发现
  • 批准号:
    2411155
  • 财政年份:
    2024
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Next Generation Infectious Disease Diagnostics: Microfluidic-Free Gigapixel PCR with Self-Assembled Partitioning
下一代传染病诊断:具有自组装分区的无微流控千兆像素 PCR
  • 批准号:
    10682295
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
High Throughput Preparation of Tuneable Magnetically Assembled 1D Nanostructures
可调谐磁组装一维纳米结构的高通量制备
  • 批准号:
    EP/T026014/2
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Research Grant
RUI: Self-Assembled Interfaces: Protolipids, Asymmetry, and Energetics
RUI:自组装界面:原生脂质、不对称性和能量学
  • 批准号:
    2304913
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
ERI: Engineering self-assembled responsive materials by employing light-driven shapeshifting of colloidal particles
ERI:利用光驱动胶体颗粒变形来设计自组装响应材料
  • 批准号:
    2301692
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323469
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Standard Grant
Self-assembled supramolecular cages for guest binding and catalysis
用于客体结合和催化的自组装超分子笼
  • 批准号:
    DP230100190
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Discovery Projects
Development of innovatively self-assembled electrocatalyst for fuel cells and electrolysers
开发用于燃料电池和电解槽的创新自组装电催化剂
  • 批准号:
    23H02059
  • 财政年份:
    2023
  • 资助金额:
    $ 39.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了