Deep Learning-based Detection of Stealth False Data Injection Attacks in Large-Scale Power Grids
基于深度学习的大规模电网隐形虚假数据注入攻击检测
基本信息
- 批准号:1808064
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research aims to strengthen national security by improving the resilience of power grid critical infrastructure with respect to data manipulation attacks. A comprehensive methodology referred to as DEFENDA - DEtection of FalsE and uNexpected Data Attacks - is proposed to quantify the integrity of data and to characterize the impact of false data on power systems. These attacks are referred to as unobservable or stealth false data injection (FDI) attacks, and they are crafted to bypass traditional bad data detection. DEFENDA's vision is to quickly detect sensor manipulation attacks and correct the false data. The project aims to contribute enhanced state-of-the-art cyber-physical security strategies for transmission system operation, where results will inform solution of similar problems including cyber-physical attack detection at generation, transmission, and distribution levels as well as in communication networks, banking systems, cloud computing and storage, and other critical infrastructures. DEFENDA will contribute attack detection strategies for real-world power grids via deep neural network (DNN) architectures known to offer superior representational power and improved detection performance. Specifically, DEFENDA aims to develop an efficient and robust FDI attack detection mechanism based on a deep long-short-term-memory (LSTM) recurrent neural network (RNN) that captures the time series nature of the status and measurement data and learns their respective normal and malicious patterns. To ensure detection efficiency, DEFENDA investigates optimal selection of the deep architecture and underlying hyper-parameters. Furthermore, DEFENDA ensures detection robustness through three measures. First, DEFENDA enables replacement of any missing status and measurement data via a deep LSTM auto-encoder (LSTM-AE) to enhance detection performance even in presence of jamming attacks. Second, using a deep variational LSTM auto-encoder (V-LSTM-AE) DEFENDA is capable to detect attacks that have not been characterized via an anomaly detector. Finally, DEFENDA carries out detection decision fusion based on centralized, semi-centralized, and decentralized detection architectures. DEFENDA will also create and make available synthetic cases with scenarios designed to promote research in cyber-physical analysis and attack detection. By demonstrating the importance of cyber security and data integrity though the scenarios developed, the project will prepare a generation to solve the problems facing society.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项拟议的研究旨在通过提高电网关键基础设施应对数据操纵攻击的弹性来加强国家安全。提出了一种被称为防御的综合方法,即检测虚假和意外的数据攻击,以量化数据的完整性并表征虚假数据对电力系统的影响。这些攻击被称为不可观察或隐形虚假数据注入(FDI)攻击,它们是为了绕过传统的坏数据检测而精心设计的。防御工事的愿景是快速检测传感器操纵攻击并纠正错误数据。该项目旨在为传输系统的运行提供增强的最先进的网络物理安全策略,其结果将为解决类似问题提供参考,包括在发电、传输和分配级别以及在通信网络、银行系统、云计算和存储以及其他关键基础设施中进行网络物理攻击检测。防御将通过深度神经网络(DNN)体系结构为现实世界的电网提供攻击检测策略,该体系结构可提供卓越的代表性能力和改进的检测性能。具体地说,防御旨在开发一种基于深度长期-短期记忆(LSTM)循环神经网络(RNN)的高效和健壮的FDI攻击检测机制,该网络捕获状态和测量数据的时间序列性质,并学习它们各自的正常和恶意模式。为了确保检测效率,防御方研究了深层架构和底层超参数的最佳选择。此外,防御通过三个措施确保检测的健壮性。首先,防御能够通过深度LSTM自动编码器(LSTM-AE)替换任何丢失的状态和测量数据,以提高检测性能,即使在存在干扰攻击的情况下也是如此。其次,使用深度变分LSTM自动编码器(V-LSTM-AE)防御能够检测到尚未通过异常检测器表征的攻击。最后,防御方基于集中式、半集中式和分散式检测体系结构进行检测决策融合。防御还将创建并提供合成案例,其场景旨在促进网络物理分析和攻击检测方面的研究。通过通过开发的场景展示网络安全和数据完整性的重要性,该项目将为解决社会面临的问题培养一代人。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generating Connected, Simple, and Realistic Cyber Graphs for Smart Grids
为智能电网生成互联、简单且真实的网络图
- DOI:10.1109/tpec54980.2022.9750688
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Boyaci, Osman;Narimani, M. Rasoul;Davis, Katherine;Serpedin, Erchin
- 通讯作者:Serpedin, Erchin
Infinite Impulse Response Graph Neural Networks for Cyberattack Localization in Smart Grids
- DOI:10.48550/arxiv.2206.12527
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Osman Boyaci;M. Narimani;K. Davis;E. Serpedin
- 通讯作者:Osman Boyaci;M. Narimani;K. Davis;E. Serpedin
Cyberattack Detection in Large-Scale Smart Grids using Chebyshev Graph Convolutional Networks
- DOI:10.1109/iceee55327.2022.9772523
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Osman Boyaci;M. Narimani;K. Davis;E. Serpedin
- 通讯作者:Osman Boyaci;M. Narimani;K. Davis;E. Serpedin
A3D: Attention-based auto-encoder anomaly detector for false data injection attacks
- DOI:10.1016/j.epsr.2020.106795
- 发表时间:2020-12
- 期刊:
- 影响因子:3.9
- 作者:Arnav Kundu;A. Sahu;E. Serpedin;K. Davis
- 通讯作者:Arnav Kundu;A. Sahu;E. Serpedin;K. Davis
Joint Detection and Localization of Stealth False Data Injection Attacks in Smart Grids Using Graph Neural Networks
- DOI:10.1109/tsg.2021.3117977
- 发表时间:2021-04
- 期刊:
- 影响因子:9.6
- 作者:Osman Boyaci;M. Narimani;K. Davis;Muhammad Ismail;T. Overbye;E. Serpedin
- 通讯作者:Osman Boyaci;M. Narimani;K. Davis;Muhammad Ismail;T. Overbye;E. Serpedin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Davis其他文献
Boston Strong—One Hospital’s Response to the 2013 Boston Marathon Bombings
- DOI:
10.1016/j.jen.2014.06.007 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:
- 作者:
Daniel Nadworny;Katherine Davis;Cynthia Miers;Tyler Howrigan;Eileen Broderick;Kirsten Boyd;Garry Dunster - 通讯作者:
Garry Dunster
On Grid Resiliency: Cyber-Physical Detection Tool Evaluated in a Multi-Stage Attack Scenario
网格弹性:在多阶段攻击场景中评估网络物理检测工具
- DOI:
10.1109/smartgridcomm57358.2023.10333970 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Leen Al Homoud;Namrata Barpanda;Ana E. Goulart;Katherine Davis;Mark Rice - 通讯作者:
Mark Rice
O-O Bond Formation in Photosystem II Oxygen Evolving Complex
- DOI:
10.1016/j.bpj.2017.11.2843 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Yulia Pushkar;Scott Jensen;Katherine Davis - 通讯作者:
Katherine Davis
Non-constancy, estimation bias, biocreep, and an alternative to current methods used in non -inferiority trials
非恒定性、估计偏差、生物蠕变以及非劣效性试验中使用的当前方法的替代方法
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Katherine Davis - 通讯作者:
Katherine Davis
Exploring the impact of microbial manipulation on the early development of kelp (Saccharina latissima) using an ecological core microbiome framework
使用生态核心微生物组框架探索微生物操控对海带(Saccharina latissima)早期发育的影响
- DOI:
10.1101/2023.12.13.571495 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jungsoo Park;S.R. Schenk;Katherine Davis;Jennifer Clark;L W Parfrey - 通讯作者:
L W Parfrey
Katherine Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Davis', 18)}}的其他基金
Collaborative Research: SHIELD: Strategic Holistic Framework for Intrusion Prevention Using Multi-modal Data in Power Systems
合作研究:SHIELD:在电力系统中使用多模态数据进行入侵防御的战略整体框架
- 批准号:
2220347 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Travel Grant for North American Power Symposium (NAPS) 2021 Attendees; The 53rd NAPS will be held at Texas A&M University, College Station, Texas, on November, 14-16, 2021
为 2021 年北美电力研讨会 (NAPS) 与会者提供旅费补助;
- 批准号:
2128391 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Lp Boundedness of Fourier Multipliers
傅里叶乘数的 Lp 有界性
- 批准号:
8001799 - 财政年份:1980
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
- 批准号:
23K11102 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
- 批准号:
23K04201 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
- 批准号:
23K16920 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
- 批准号:
23K14406 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
TruDetect: Trustworthy Deep-Learning based Hardware Trojan Detection
TruDetect:值得信赖的基于深度学习的硬件木马检测
- 批准号:
EP/X036960/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Linking endotype and phenotype to understand COPD heterogeneity via deep learning and network science
通过深度学习和网络科学将内型和表型联系起来以了解 COPD 异质性
- 批准号:
10569732 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别: