D3SC: Data-Driven Modeling and Experimental Investigation for Discovery of Aquatic Chemistry Reaction Kinetics: New Tools for Water Reuse Applications
D3SC:用于发现水生化学反应动力学的数据驱动建模和实验研究:水回用应用的新工具
基本信息
- 批准号:1808242
- 负责人:
- 金额:$ 43.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is supported by the Environmental Chemical Sciences Program in the NSF Chemistry Division. Professors Bryan M. Wong and Haizhou Liu at the University of California-Riverside combine computational techniques with laboratory measurements to understand changes in chemical reactions that occur in wastewater during treatment and reuse. The researchers seek to understand the rate of oxidation reactions of organic compounds in water by reactive species called radicals. The computational tools used include data visualization, data mining, machine learning, and data analytics techniques. Predictive theoretical models and quantum-based methods are developed that are applicable to water reuse applications. With these, the chemical reaction rates for water reuse are calculated. The models are then validated and improved through targeted experiments. This approach advances the basic scientific understanding of reaction dynamics in molecular radicals. This project allows a seamless connection of both theory and experiment to address the efficiency and reaction pathways of radical-organics interactions associated with water purification processes. Professors Wong and Liu engage students at all levels in their research, including community college students. A total of three Hispanic-Serving Institutions are involved in this project. The investigators also reach out to K-12 students and their teachers to promote understanding of the role of computing in environmental science and engineering. By examining wastewater treatments, this project promotes human health and sustainability efforts in industry. This project addresses aquatic reaction kinetics for advanced water treatment and reuse. The combined multidisciplinary approach leads to a systematic understanding of how molecular structure influences thermodynamics and kinetics in complex aqueous environments. This is a significant scientific and technical challenge and critical to providing a guided, rational path for improving water reuse. Furthermore, this project establishes a computational screening effort to identify fundamental physicochemical characteristics that affect aqueous chemical kinetics. Both density functional theory (DFT) and rigorous many-body wave function CCSD(T)-F12 methods are used. The project also establishes a series of guided kinetics and characterization efforts that closely follow the computational screening efforts, including numerical sensitivity analyses. These calculations provide a systematic understanding of electronic structure of organic molecules in aqueous environments. The experiments in turn guide the computational studies and afford the capability to understand the detailed, complex contributions that modulate the reaction dynamics in these aqueous systems. The fundamental knowledge generated by this work has broad societal impact, particularly for regions and industries that critically rely on water treatment and reuse.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项由NSF化学部的环境化学科学计划支持。 Bryan M.加州大学河滨分校的Wong和Haizhou Liu将联合收割机计算技术与实验室测量相结合,以了解废水处理和再利用过程中发生的化学反应的变化。 研究人员试图了解水中有机化合物通过称为自由基的活性物质氧化反应的速率。 使用的计算工具包括数据可视化、数据挖掘、机器学习和数据分析技术。 开发了适用于水再利用应用的预测理论模型和基于量子的方法。据此计算了中水回用的化学反应速率。然后通过有针对性的实验对模型进行验证和改进。这种方法推进了对分子自由基反应动力学的基本科学理解。该项目允许理论和实验的无缝连接,以解决与水净化过程相关的自由基-有机物相互作用的效率和反应途径。黄教授和刘教授在他们的研究中吸引了各个层次的学生,包括社区学院的学生。共有三个西班牙裔服务机构参与了这一项目。调查人员还接触到K-12学生和他们的老师,以促进对计算在环境科学和工程中的作用的理解。 通过研究废水处理,该项目促进了人类健康和工业可持续发展的努力。本计画探讨水反应动力学在水处理与再利用之应用。结合多学科的方法导致分子结构如何影响复杂的水环境中的热力学和动力学的系统理解。这是一项重大的科学和技术挑战,对于为改进水的再利用提供有指导的合理途径至关重要。此外,该项目建立了一个计算筛选的努力,以确定影响水化学动力学的基本物理化学特性。采用密度泛函理论(DFT)和严格的多体波函数CCSD(T)-F12方法。该项目还建立了一系列指导动力学和表征工作,密切关注计算筛选工作,包括数值敏感性分析。这些计算提供了一个系统的理解,在水环境中的有机分子的电子结构。这些实验反过来又指导了计算研究,并提供了理解这些水溶液体系中调节反应动力学的详细、复杂贡献的能力。这项工作产生的基础知识具有广泛的社会影响,特别是对严重依赖水处理和再利用的地区和行业。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Machine Learning Approach for Predicting Defluorination of Per- and Polyfluoroalkyl Substances (PFAS) for Their Efficient Treatment and Removal
- DOI:10.1021/acs.estlett.9b00476
- 发表时间:2019-10-01
- 期刊:
- 影响因子:10.9
- 作者:Raza, Akber;Bardhan, Sharmistha;Wong, Bryan M.
- 通讯作者:Wong, Bryan M.
Photo-induced degradation of PFASs: Excited-state mechanisms from real-time time-dependent density functional theory
光诱导的 PFAS 降解:来自实时时间依赖密度泛函理论的激发态机制
- DOI:10.1016/j.jhazmat.2021.127026
- 发表时间:2022
- 期刊:
- 影响因子:13.6
- 作者:Yamijala, Sharma S.R.K.C.;Shinde, Ravindra;Hanasaki, Kota;Ali, Zulfikhar A.;Wong, Bryan M.
- 通讯作者:Wong, Bryan M.
Degradation of 1,4-dioxane by reactive species generated during breakpoint chlorination: Proposed mechanisms and implications for water treatment and reuse
断点氯化过程中产生的活性物质降解 1,4-二恶烷:拟议的机制以及对水处理和再利用的影响
- DOI:10.1016/j.hazl.2022.100054
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Patton, Samuel D.;Dodd, Michael C.;Liu, Haizhou
- 通讯作者:Liu, Haizhou
Harnessing deep neural networks to solve inverse problems in quantum dynamics: machine-learned predictions of time-dependent optimal control fields
利用深度神经网络解决量子动力学中的逆问题:依赖时间的最优控制场的机器学习预测
- DOI:10.1039/d0cp03694c
- 发表时间:2020
- 期刊:
- 影响因子:3.3
- 作者:Wang, Xian;Kumar, Anshuman;Shelton, Christian R.;Wong, Bryan M.
- 通讯作者:Wong, Bryan M.
Real-time degradation dynamics of hydrated per- and polyfluoroalkyl substances (PFASs) in the presence of excess electrons
存在过量电子的情况下水合全氟烷基物质和多氟烷基物质 (PFAS) 的实时降解动态
- DOI:10.1039/c9cp06797c
- 发表时间:2020
- 期刊:
- 影响因子:3.3
- 作者:Yamijala, Sharma S.;Shinde, Ravindra;Wong, Bryan M.
- 通讯作者:Wong, Bryan M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Wong其他文献
Low-cost model reconstruction from image sequences
从图像序列进行低成本模型重建
- DOI:
10.1145/513867.513896 - 发表时间:
2001 - 期刊:
- 影响因子:4.4
- 作者:
C. Lyness;Otto;Bryan Wong;P. Marais - 通讯作者:
P. Marais
Amplification Effects on the Acoustic Change Complex in Older Adults With Sensorineural Hearing Loss
对感音神经性听力损失老年人声学变化复合体的放大效应
- DOI:
10.1044/2023_persp-23-00131 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Shehorn;Bryan Wong;N. Marrone;Barbara K. Cone - 通讯作者:
Barbara K. Cone
Model Reconstruction for a Virtual Interactive MERLIN
虚拟交互式 MERLIN 的模型重建
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
C. Lyness;Otto;Bryan Wong;P. Marais - 通讯作者:
P. Marais
Bryan Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan Wong', 18)}}的其他基金
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323669 - 财政年份:2023
- 资助金额:
$ 43.93万 - 项目类别:
Continuing Grant
EAGER: CDS&E: Field Programmable Gate Arrays (FPGAs) for Enhancing the Speed and Energy Efficiency of Quantum Chemistry Simulations
渴望:CDS
- 批准号:
2028365 - 财政年份:2020
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
EAGER: CDS&E: An Open-Source Software Package for Assessing and Controlling Photocatalytic Reactions
渴望:CDS
- 批准号:
1833218 - 财政年份:2018
- 资助金额:
$ 43.93万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Collaborative R&D
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
- 批准号:
DP240100102 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Discovery Projects
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Fellowship
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant