RUI: Selenium-modified Electrodes: From Surface Reactivity to Biosensing Developments

RUI:硒修饰电极:从表面反应性到生物传感发展

基本信息

  • 批准号:
    1808623
  • 负责人:
  • 金额:
    $ 30.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurement and Imaging program in the Division of Chemistry, Professor Marisa Buzzeo of Barnard College and her team of undergraduate research students study how biological molecules communicate via the transfer of electrons. The tunable chemical reactivity that is accessible by the transfer of electrons is harnessed by Nature in a wide range of important biochemical processes. Photosynthesis and cellular respiration, for example, rely on the exquisite sensitivity and selectivity with which electrons are transferred between molecules. The Buzzeo group is focusing on the chemical properties of the essential trace element selenium, a natural antioxidant, to gain a deeper understanding of its unique role in biological electron transfer events. Their studies provide fundamental information regarding the reactivity distinctly afforded by the presence of this element. Findings from their work also have the potential to result in selective sensing of selenium- and sulfur-containing molecules, including in clinical settings. This project provides multiple interdisciplinary research opportunities for students at Barnard College, a liberal arts undergraduate institution for women, and bolsters the participation of underrepresented groups in the physical sciences via community-based outreach activities involving high school students from disadvantaged backgrounds and individuals with disabilities. The aim is to expose both groups to chemical concepts, applications, and careers that would otherwise appear unattainable or inaccessible.The accurate measurement of redox potentials is imperative for detailed understanding of how species participate in electron-transfer reactions. Electrochemical studies of chalcogen-containing molecules are hindered by unwanted oxidation and adsorption on electrode surfaces. New electrode materials have been identified that demonstrate great promise for the aqueous measurement of chalcogen-containing redox-active molecules. It has been shown that the intrinsic reactivity between selenium and gold yields a stable and reproducible electrode surface modification that makes accessible diffusional electron transfer of solution-based chalcogen analytes. The Buzzeo group is working to characterize selenium-modified electrodes by a combination of spectroscopic and electrochemical techniques. Specifically, they are measuring the electrochemical behavior of biological selenium and sulfur species on selenium-modified gold substrates to obtain fundamental thermodynamic parameters, and using the optimized selenium-modified surfaces to develop a portable electrochemical biosensor for cystine, a known culprit in kidney stone formation. Aided by collaborations across several departments and institutions, the work entails characterization of both surface and solution speciation to build a molecular-level description of the selenium-gold adsorbate layer. Sensing capabilities are assessed through comprehensive electroanalytical study of selenium- and sulfur-containing amino acids, peptides, and ligands. Together these pursuits will yield fundamental knowledge about selenium-gold surface reactivity and will enable measurement of physiologically relevant redox-active species. The work offers Barnard undergraduates research training at the interface of physical, inorganic, analytical, and biological chemistry. Additionally, the work includes educational activities involving high school students from disadvantaged backgrounds and individuals with disabilities to promote a more diversified STEM workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量和成像计划的支持下,巴纳德学院的Marisa Buzzeo教授和她的本科研究生团队研究生物分子如何通过电子转移进行通信。通过电子转移可获得的可调化学反应性被大自然利用在广泛的重要生物化学过程中。例如,光合作用和细胞呼吸依赖于电子在分子之间转移的灵敏度和选择性。Buzzeo团队专注于必需微量元素硒(一种天然抗氧化剂)的化学性质,以更深入地了解其在生物电子转移事件中的独特作用。他们的研究提供了关于这种元素的存在所提供的反应性的基本信息。他们的研究结果也有可能导致含硒和含硫分子的选择性传感,包括在临床环境中。该项目为巴纳德学院的学生提供了多个跨学科研究机会,巴纳德学院是一所女子文科本科院校,并通过涉及来自弱势背景的高中生和残疾人的社区外展活动,支持代表性不足的群体参与物理科学。其目的是让这两个群体接触到化学概念、应用和职业,否则这些概念、应用和职业似乎无法实现或无法实现。氧化还原电位的准确测量对于详细了解物种如何参与电子转移反应至关重要。含硫族元素分子的电化学研究受到电极表面不必要的氧化和吸附的阻碍。新的电极材料已被确定,表现出很大的希望,为含硫族元素的氧化还原活性分子的水溶液测量。已经表明,硒和金之间的固有反应性产生稳定且可再现的电极表面改性,其使得基于溶液的硫族元素分析物的可访问的扩散电子转移。Buzzeo小组正在努力通过光谱和电化学技术的结合来表征硒修饰电极。 具体来说,他们正在测量生物硒和硫物质在硒改性金基底上的电化学行为,以获得基本的热力学参数,并使用优化的硒改性表面开发用于胱氨酸的便携式电化学生物传感器,胱氨酸是肾结石形成的已知罪魁祸首。在多个部门和机构的合作帮助下,这项工作需要表征表面和溶液形态,以建立硒-金吸附物层的分子水平描述。通过对含硒和含硫氨基酸、肽和配体的全面电分析研究评估传感能力。这些追求将产生有关硒-金表面反应性的基础知识,并将使生理相关的氧化还原活性物质的测量成为可能。这项工作为巴纳德大学的本科生提供了物理,无机,分析和生物化学界面的研究培训。此外,该奖项还包括让来自弱势背景的高中生和残疾人参与的教育活动,以促进更多元化的STEM劳动力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marisa Buzzeo其他文献

Marisa Buzzeo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marisa Buzzeo', 18)}}的其他基金

MRI-R2: Acquisition of UV-Vis-NIR, FT-IR, and Fluorescence Spectrometric Instrumentation
MRI-R2:获取紫外-可见-近红外、傅里叶变换红外和荧光光谱仪器
  • 批准号:
    0959177
  • 财政年份:
    2010
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Standard Grant

相似海外基金

Chemo-enzymatic synthesis of selenium-modified nucleosides, nucleotides and nucleic acids
硒修饰核苷、核苷酸和核酸的化学酶合成
  • 批准号:
    392246628
  • 财政年份:
    2018
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Research Grants
Development of Simplified Methodologies to Synthesize Selenium Modified Oligonucleotides for Applications in Structure Determination by X-ray Crystallography
开发合成硒修饰寡核苷酸的简化方法,用于 X 射线晶体学结构测定
  • 批准号:
    495562-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The effects of dietary selenium on translational control of protein synthesis
膳食硒对蛋白质合成翻译控制的影响
  • 批准号:
    9897535
  • 财政年份:
    2015
  • 资助金额:
    $ 30.14万
  • 项目类别:
The effects of dietary selenium on translational control of protein synthesis
膳食硒对蛋白质合成翻译控制的影响
  • 批准号:
    10379255
  • 财政年份:
    2015
  • 资助金额:
    $ 30.14万
  • 项目类别:
Selenium Colorectal Cancer Chemoprevention Trials
硒结直肠癌化学预防试验
  • 批准号:
    8307472
  • 财政年份:
    2011
  • 资助金额:
    $ 30.14万
  • 项目类别:
Selenium Colorectal Cancer Chemoprevention Trials
硒结直肠癌化学预防试验
  • 批准号:
    8517032
  • 财政年份:
    2011
  • 资助金额:
    $ 30.14万
  • 项目类别:
Selenium Colorectal Cancer Chemoprevention Trials
硒结直肠癌化学预防试验
  • 批准号:
    8205553
  • 财政年份:
    2011
  • 资助金额:
    $ 30.14万
  • 项目类别:
Synthesis of Selenium-modified RNA by engineered RNA Polymerases
通过工程 RNA 聚合酶合成硒修饰的 RNA
  • 批准号:
    132770984
  • 财政年份:
    2009
  • 资助金额:
    $ 30.14万
  • 项目类别:
    Research Grants
Methionine sulfoxide reduction, selenium and aging
蛋氨酸亚砜还原、硒与衰老
  • 批准号:
    6558432
  • 财政年份:
    2003
  • 资助金额:
    $ 30.14万
  • 项目类别:
Selenium Enriched Plant Material for Chemoprevention
用于化学预防的富硒植物材料
  • 批准号:
    6513470
  • 财政年份:
    2001
  • 资助金额:
    $ 30.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了