RUI: Quantum Enhanced Thermoelectric Response of Molecule-based Systems

RUI:基于分子的系统的量子增强热电响应

基本信息

项目摘要

NONTECHNICAL SUMMARYThis award supports research and education aimed to understand the influence of quantum mechanical interference effects and strong interactions between electrons on the thermoelectric effect in molecule-based materials. The thermoelectric effect reflects the coupling between heat and charge, which makes it possible to directly convert heat into electrical energy in a device which has no moving parts and no operational carbon footprint. In addition to energy harvesting applications, the thermoelectric effect is also of fundamental interest since it can be strongly influenced by molecular structure, the quantum mechanical nature of the electron, and interactions among electrons. The overarching goal of this project is to advance the understanding of how these aspects combine to influence the thermoelectric effect in molecule-based materials. This award supports research focused on the exploration and design of novel molecule-based thermoelectric systems with applications in clean energy, spintronics, and the management of heat on the nanoscale, for example in nanoscale electronic devices. Because of the small size of a molecule, the charge, heat, and magnetic currents flowing through it are highly dependent on one another. The PI aims to advance understanding of the physics underlying the interrelationships among these currents and their macroscopic consequences, including the thermoelectric effect. On small length scales where quantum mechanics dominates, studies of thermoelectric effects on the local temperature will help to advance understanding of local thermodynamic properties in quantum mechanical systems far from the familiar balanced state of equilibrium. Undergraduate students at Illinois State University will be directly involved in all aspects of research and gain hands-on experience in modern electronic structure and transport theories as they apply to thermoelectricity, molecular materials, spintronics, and scanning probe experiments. As a result, this project will contribute to the preparation of the next generation of scientists required to maintain forward momentum in these fields and national competitiveness in materials research.TECHNICAL SUMMARYThis award supports research and education aimed to advance understanding of how quantum interference effects and interactions influence the thermoelectric response of molecule-based materials. The interplay between heat, charge, and spin currents are manifest in the thermoelectric effect, where the spin-resolved thermopower is a macroscopic observable related to the coupling strength among the microscopic quantities. The PI aims to optimize molecular structure in conjunction with quantum mechanical effects to enhance and control the transport and conversion of energy. The PI will investigate nonequilibrium transport effects. The overarching goal of this project is to advance the understanding of how quantum mechanics, many-body correlations, and molecular structure influence the spin-resolved thermoelectric response in molecule-based materials. The ability to identify and harness novel aspects of heat, charge, and spin transport in materials may help to circumvent certain longstanding challenges in the energy conversion field as well as in the continued miniaturization of electronic devices. The proposed research will focus on: (1) determining the molecular structure-function relationships of the thermoelectric response, including the use of thermoelectricity as a spectroscopic method; (2) the nature of spin-thermoelectric response and enhancement in molecule-based systems; and (3) temperature measurement at the nanoscale. This project involves the development of state-of-the-art theoretical and computational tools, including those based on non-equilibrium Green's functions, combined with electronic structure theories. With these techniques the PI aims to develop new insights into fundamental aspects of interacting nonequilibrium quantum systems and will work to develop a material design strategy rooted in quantum mechanical concepts. This project is expected to contribute to the advance of the theory of molecular thermoelectricity and temperature measurement. The proposed research into the interplay between heat, charge, and spin in quantum-dominated molecular systems may have impact on how thermoelectric materials and thermal management devices are developed. The computational tools and theory developed in this proposal will be shared with other researchers, and will also be integrated directly into undergraduate classes. Undergraduate students will be involved in all aspects of this project, from initial theory and code development to the authoring of papers and presenting results at scientific conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持旨在了解量子力学干涉效应和电子之间的强相互作用对分子基材料中热电效应的影响的研究和教育。热电效应反映了热量和电荷之间的耦合,这使得在没有移动部件和没有操作碳足迹的设备中直接将热量转换为电能成为可能。除了能量收集应用之外,热电效应也是基本的兴趣,因为它可以受到分子结构,电子的量子力学性质和电子之间的相互作用的强烈影响。这个项目的首要目标是促进这些方面如何结合联合收割机,以影响分子基材料的热电效应的理解。该奖项支持的研究重点是探索和设计新型分子基热电系统,应用于清洁能源,自旋电子学和纳米级热管理,例如纳米级电子设备。由于分子的尺寸很小,流经它的电荷、热量和磁流高度依赖于彼此。PI旨在促进对这些电流之间相互关系及其宏观后果(包括热电效应)的物理基础的理解。在量子力学占主导地位的小尺度上,研究局部温度的热电效应将有助于进一步理解远离熟悉的平衡态的量子力学系统中的局部热力学性质。伊利诺伊州立大学的本科生将直接参与研究的各个方面,并获得现代电子结构和传输理论的实践经验,因为它们适用于热电,分子材料,自旋电子学和扫描探针实验。因此,该项目将有助于培养下一代科学家,以保持这些领域的发展势头和国家在材料研究方面的竞争力。技术概述该奖项支持旨在促进理解量子干涉效应和相互作用如何影响分子基材料的热电响应的研究和教育。热、电荷和自旋电流之间的相互作用表现在热电效应中,其中自旋分辨热电势是与微观量之间的耦合强度相关的宏观可观察量。PI旨在结合量子力学效应优化分子结构,以增强和控制能量的传输和转换。PI将研究非平衡输运效应。该项目的总体目标是推进量子力学,多体相关性和分子结构如何影响分子基材料中的自旋分辨热电响应的理解。识别和利用材料中的热、电荷和自旋输运的新方面的能力可能有助于规避能量转换领域以及电子设备的持续小型化中的某些长期挑战。拟议的研究将集中在:(1)确定热电响应的分子结构-功能关系,包括使用热电作为光谱方法;(2)自旋热电响应的性质和基于分子的系统的增强;以及(3)纳米级的温度测量。该项目涉及最先进的理论和计算工具的发展,包括那些基于非平衡绿色函数,结合电子结构理论。通过这些技术,PI旨在对相互作用的非平衡量子系统的基本方面提出新的见解,并将致力于开发一种植根于量子力学概念的材料设计策略。本计画将有助于分子热电理论与温度量测之发展。对量子主导分子系统中热、电荷和自旋之间相互作用的研究可能会对热电材料和热管理设备的开发产生影响。本提案中开发的计算工具和理论将与其他研究人员共享,并将直接融入本科课程。本科生将参与该项目的各个方面,从最初的理论和代码开发到论文撰写和在科学会议上展示结果。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Bergfield其他文献

Justin Bergfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
  • 批准号:
    EP/Z000548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Research Grant
RII Track-4:NSF: In-vitro Cytotoxicity Assessment of Synthesized Quantum Dots for Enhanced Cell Imaging
RII Track-4:NSF:用于增强细胞成像的合成量子点的体外细胞毒性评估
  • 批准号:
    2327429
  • 财政年份:
    2024
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
  • 批准号:
    2344350
  • 财政年份:
    2024
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: A Quantum Good Network Protocol (QGP) and Implementation for Security-Enhanced Network Authentication
ExpandQISE:轨道 1:量子良好网络协议 (QGP) 和安全增强型网络身份验证的实现
  • 批准号:
    2329053
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Quantum-Enhanced 3D Optical Microscopy (Q3DOM)
量子增强 3D 光学显微镜 (Q3DOM)
  • 批准号:
    BB/X004317/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Research Grant
Q-NAV: Quantum Enhanced Inertial Navigation Systems
Q-NAV:量子增强惯性导航系统
  • 批准号:
    10071739
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Small Business Research Initiative
Resonator-enhanced quantum levitation of macroscopic systems
宏观系统的谐振器增强量子悬浮
  • 批准号:
    DP230101940
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Discovery Projects
QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
  • 批准号:
    2326837
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了