Quantum-Enhanced 3D Optical Microscopy (Q3DOM)

量子增强 3D 光学显微镜 (Q3DOM)

基本信息

  • 批准号:
    BB/X004317/1
  • 负责人:
  • 金额:
    $ 23.17万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Since the invention of optical imaging devices, such as microscopes and telescopes, there has been a quest to enhance their resolution. A fundamental limitation, known as the Rayleigh limit, is associated with diffraction: conventional optical systems cannot resolve angular separations smaller than the wavelength of the emitted light. In the last decades, a number of techniques for circumventing the diffraction limit in microscopy have been proposed, defining a field called superresolution imaging. However, these approaches are either operational in the near-field, or rely on non-linear probing, which makes them expensive, invasive, and not universally applicable.Developing an imaging technology that is linear-optical, operational in the far-field regime, and able to reconstruct three-dimensional structures would mark a revolution in all fields of science, engineering, biology and medicine that involve optical imaging.Although the diffraction limit has existed for 150 years and appeared unshakeable, a recent theoretical breakthrough has revealed that it can be beaten by applying a fundamentally different method of detection. Rather than measuring the intensity as a function of the transverse position in the collection plane (as the traditional "direct imaging" approach), one can measure the correlation of electromagnetic field amplitudes at different transverse positions. In practice, this involves detecting the light emitted by an object in higher-order transverse electromagnetic modes and enables one to extract further information about the incoming field, thereby achieving sub-Rayleigh precision and in principle reaching the ultimate resolution limits allowed by quantum mechanics. This discovery has been confirmed by a number of experiments, notably a recent work by the Oxford PI, which demonstrated, for the first time, the application of the new technique to obtain full 2D images of complex objects. However, there is still a long way to go before this method can become a mainstream, universally applicable imaging technique. One of the challenges is to extend the method to 3D imaging - that is, the task of mapping out the heights of object surface features. We will address this major challenge in this project. Reliant on the conceptual theory, recently developed by the Nottingham PI and Co-I, we will design an innovative instrument based on the core working principle of quantum superresolution, benchmark its capabilities against theoretical simulations, and demonstrate its performance in imaging real 3D samples. The main advantage of our proposed technology is its non-invasive nature. It will achieve sub-Rayleigh lateral and angular resolution without requiring any interaction and proximity to the sample, but by passively analysing the light field arriving from the sample making use of optimised detectors. Our proposed technology can therefore find wide-ranging applications, including imaging of biological tissues, quality control in additive manufacturing, and astronomical observations of twin stars and exoplanets.
自从光学成像设备(例如显微镜和望远镜)发明以来,一直在寻求增强其分辨率。一种称为瑞利极限的基本限制与衍射有关:传统的光学系统无法解析角度分离小于发射光的波长。在过去的几十年中,已经提出了许多用于绕过显微镜中衍射极限的技术,并定义了一个称为跨分辨率成像的磁场。但是,这些方法要么在近场中运行,要么依赖于非线性探测,这使它们变得昂贵,具有侵入性,并且不适用。开发成像技术是线性的,在远场状态下运行的成像技术,并且能够重建三维结构,可以标志着各个领域的革命,这些革命涉及科学,生物学,生物学,Imparight的革新150年,似乎是不可动摇的,最近的理论突破表明,它可以通过采用根本不同的检测方法来击败它。与其在收集平面中测量强度是横向位置的函数(作为传统的“直接成像”方法),可以测量在不同横向位置处电磁场振幅的相关性。实际上,这涉及检测物体在高阶横向电磁模式下发出的光,并使人们能够提取有关传入场的进一步信息,从而达到了亚雷利精度,并原则上达到了量子力学允许的最终分辨率限制。这一发现已通过许多实验证实,尤其是牛津Pi的最新工作,这首先证明了新技术的应用以获取复杂物体的完整2D图像。但是,在这种方法成为一种主流,普遍适用的成像技术之前,还有很长的路要走。挑战之一是将方法扩展到3D成像 - 即,绘制对象表面特征的高度的任务。我们将在该项目中解决这个重大挑战。依赖于诺丁汉Pi和Co-I最近开发的概念理论,我们将根据量子超级分辨率的核心工作原理设计创新的仪器,基于其针对理论模拟的能力,并在成像中表现出其在真实3D样品中的性能。我们提出的技术的主要优点是其非侵入性。它将实现亚雷利的横向和角度分辨率,而无需与样品的任何相互作用和接近度,而是通过被动地分析从样品中使用优化检测器到达的光场。因此,我们提出的技术可以找到广泛的应用,包括对生物组织的成像,添加剂制造中的质量控制以及对双星和外行星的天文观测。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Passive superresolution imaging of incoherent objects
非相干物体的被动超分辨率成像
  • DOI:
    10.1364/optica.493718
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Frank J
  • 通讯作者:
    Frank J
Every quantum helps: Operational advantage of quantum resources beyond convexity
每个量子都有帮助:量子资源超越凸性的运营优势
  • DOI:
    10.48550/arxiv.2310.09154
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kuroiwa K
  • 通讯作者:
    Kuroiwa K
Robustness and weight resource measures without convexity restriction: Multicopy witness and operational advantage in static and dynamical quantum resource theories
无凸性限制的鲁棒性和权重资源度量:静态和动态量子资源理论中的多副本见证和操作优势
  • DOI:
    10.48550/arxiv.2310.09321
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kuroiwa K
  • 通讯作者:
    Kuroiwa K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Lvovsky其他文献

Alexander Lvovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Lvovsky', 18)}}的其他基金

Organic optoelectronic neural networks
有机光电神经网络
  • 批准号:
    EP/Y020596/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Research Grant

相似国自然基金

3D打印共聚聚醚醚酮分子结构设计及层间增强机理研究
  • 批准号:
    52303053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向增强现实裸眼3D显示的按需视场调制及像素化体光栅设计研究
  • 批准号:
    62305236
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型3D拓扑连接结构复合界面层增强柔性全聚合物太阳能电池机械稳定性的研究
  • 批准号:
    52303240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于层间界面水调控的水泥基3D打印材料界面自增强机理研究
  • 批准号:
    52308284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
连续纤维增强复合材料稀疏结构设计与3D打印高效成形
  • 批准号:
    52205413
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
  • 批准号:
    10749330
  • 财政年份:
    2023
  • 资助金额:
    $ 23.17万
  • 项目类别:
Acoustic Droplet Initiated Radiosensitivity of Hepatocellular Carcinoma
声液滴引发肝细胞癌的放射敏感性
  • 批准号:
    10648110
  • 财政年份:
    2023
  • 资助金额:
    $ 23.17万
  • 项目类别:
Using surface-enhanced Raman spectroscopy to improve the delivery of radiotherapy in 3D tumour models
使用表面增强拉曼光谱改善 3D 肿瘤模型中的放射治疗效果
  • 批准号:
    2898373
  • 财政年份:
    2023
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Studentship
EAGER: Edible Mechanical Metamaterials via 3D Printing for Enhanced Food Properties
EAGER:通过 3D 打印增强食品特性的可食用机械超材料
  • 批准号:
    2333987
  • 财政年份:
    2023
  • 资助金额:
    $ 23.17万
  • 项目类别:
    Standard Grant
3D microprinting-enabled microinjection needle arrays for enhanced therapeutics delivery into the brain
支持 3D 微打印的显微注射针阵列可增强向大脑的治疗输送
  • 批准号:
    10761073
  • 财政年份:
    2023
  • 资助金额:
    $ 23.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了