Quantum-Enhanced 3D Optical Microscopy (Q3DOM)
量子增强 3D 光学显微镜 (Q3DOM)
基本信息
- 批准号:BB/X004317/1
- 负责人:
- 金额:$ 23.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Since the invention of optical imaging devices, such as microscopes and telescopes, there has been a quest to enhance their resolution. A fundamental limitation, known as the Rayleigh limit, is associated with diffraction: conventional optical systems cannot resolve angular separations smaller than the wavelength of the emitted light. In the last decades, a number of techniques for circumventing the diffraction limit in microscopy have been proposed, defining a field called superresolution imaging. However, these approaches are either operational in the near-field, or rely on non-linear probing, which makes them expensive, invasive, and not universally applicable.Developing an imaging technology that is linear-optical, operational in the far-field regime, and able to reconstruct three-dimensional structures would mark a revolution in all fields of science, engineering, biology and medicine that involve optical imaging.Although the diffraction limit has existed for 150 years and appeared unshakeable, a recent theoretical breakthrough has revealed that it can be beaten by applying a fundamentally different method of detection. Rather than measuring the intensity as a function of the transverse position in the collection plane (as the traditional "direct imaging" approach), one can measure the correlation of electromagnetic field amplitudes at different transverse positions. In practice, this involves detecting the light emitted by an object in higher-order transverse electromagnetic modes and enables one to extract further information about the incoming field, thereby achieving sub-Rayleigh precision and in principle reaching the ultimate resolution limits allowed by quantum mechanics. This discovery has been confirmed by a number of experiments, notably a recent work by the Oxford PI, which demonstrated, for the first time, the application of the new technique to obtain full 2D images of complex objects. However, there is still a long way to go before this method can become a mainstream, universally applicable imaging technique. One of the challenges is to extend the method to 3D imaging - that is, the task of mapping out the heights of object surface features. We will address this major challenge in this project. Reliant on the conceptual theory, recently developed by the Nottingham PI and Co-I, we will design an innovative instrument based on the core working principle of quantum superresolution, benchmark its capabilities against theoretical simulations, and demonstrate its performance in imaging real 3D samples. The main advantage of our proposed technology is its non-invasive nature. It will achieve sub-Rayleigh lateral and angular resolution without requiring any interaction and proximity to the sample, but by passively analysing the light field arriving from the sample making use of optimised detectors. Our proposed technology can therefore find wide-ranging applications, including imaging of biological tissues, quality control in additive manufacturing, and astronomical observations of twin stars and exoplanets.
自从显微镜和望远镜等光学成像设备发明以来,人们一直在寻求提高其分辨率。一个基本限制(称为瑞利极限)与衍射相关:传统光学系统无法解析小于发射光波长的角距。在过去的几十年里,人们提出了许多规避显微镜衍射极限的技术,定义了一个称为超分辨率成像的领域。然而,这些方法要么在近场操作,要么依赖非线性探测,这使得它们昂贵、侵入性且不普遍适用。开发一种线性光学、在远场范围操作并能够重建三维结构的成像技术将标志着涉及光学成像的所有科学、工程、生物学和医学领域的一场革命。尽管衍射极限已经存在了 150 年来,它似乎不可动摇,但最近的一项理论突破表明,可以通过应用一种根本不同的检测方法来击败它。人们可以测量不同横向位置处电磁场振幅的相关性,而不是测量作为收集平面中横向位置的函数的强度(如传统的“直接成像”方法)。实际上,这涉及以高阶横向电磁模式检测物体发射的光,并使人们能够提取有关入射场的更多信息,从而实现亚瑞利精度,并原则上达到量子力学允许的最终分辨率极限。这一发现得到了许多实验的证实,特别是牛津大学 PI 最近的一项工作,该工作首次证明了新技术的应用来获取复杂物体的完整二维图像。然而,这种方法要成为主流、普遍适用的成像技术还有很长的路要走。挑战之一是将该方法扩展到 3D 成像,即绘制物体表面特征高度的任务。我们将在这个项目中解决这一重大挑战。依靠诺丁汉 PI 和 Co-I 最近开发的概念理论,我们将设计一种基于量子超分辨率核心工作原理的创新仪器,根据理论模拟对其功能进行基准测试,并展示其在真实 3D 样本成像中的性能。我们提出的技术的主要优点是其非侵入性。它将实现亚瑞利横向和角度分辨率,无需与样品进行任何交互和接近,而是利用优化的探测器被动分析来自样品的光场。因此,我们提出的技术可以找到广泛的应用,包括生物组织成像、增材制造中的质量控制以及双星和系外行星的天文观测。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Passive superresolution imaging of incoherent objects
非相干物体的被动超分辨率成像
- DOI:10.1364/optica.493718
- 发表时间:2023
- 期刊:
- 影响因子:10.4
- 作者:Frank J
- 通讯作者:Frank J
Every quantum helps: Operational advantage of quantum resources beyond convexity
每个量子都有帮助:量子资源超越凸性的运营优势
- DOI:10.48550/arxiv.2310.09154
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kuroiwa K
- 通讯作者:Kuroiwa K
Robustness and weight resource measures without convexity restriction: Multicopy witness and operational advantage in static and dynamical quantum resource theories
无凸性限制的鲁棒性和权重资源度量:静态和动态量子资源理论中的多副本见证和操作优势
- DOI:10.48550/arxiv.2310.09321
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kuroiwa K
- 通讯作者:Kuroiwa K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Lvovsky其他文献
Alexander Lvovsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Lvovsky', 18)}}的其他基金
Organic optoelectronic neural networks
有机光电神经网络
- 批准号:
EP/Y020596/1 - 财政年份:2024
- 资助金额:
$ 23.17万 - 项目类别:
Research Grant
相似海外基金
Using surface-enhanced Raman spectroscopy to improve the delivery of radiotherapy in 3D tumour models
使用表面增强拉曼光谱改善 3D 肿瘤模型中的放射治疗效果
- 批准号:
2898373 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别:
Studentship
EAGER: Edible Mechanical Metamaterials via 3D Printing for Enhanced Food Properties
EAGER:通过 3D 打印增强食品特性的可食用机械超材料
- 批准号:
2333987 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别:
Standard Grant
3D microprinting-enabled microinjection needle arrays for enhanced therapeutics delivery into the brain
支持 3D 微打印的显微注射针阵列可增强向大脑的治疗输送
- 批准号:
10761073 - 财政年份:2023
- 资助金额:
$ 23.17万 - 项目类别:
GOALI: 3D-printed biomimetic structures for enhanced boiling heat transfer and thermal management
GOALI:3D 打印仿生结构可增强沸腾传热和热管理
- 批准号:
2149489 - 财政年份:2022
- 资助金额:
$ 23.17万 - 项目类别:
Standard Grant
SBIR Phase I: Programmable Three-Dimensional (3D) Light Curtains for Enhanced Human-Robot Collaboration
SBIR 第一阶段:用于增强人机协作的可编程三维 (3D) 光幕
- 批准号:
2136638 - 财政年份:2022
- 资助金额:
$ 23.17万 - 项目类别:
Standard Grant
Investigating the utility and exploring biological targets of enhanced micro-wound healing compounds in 2D and 3D skin models
研究增强微伤口愈合化合物在 2D 和 3D 皮肤模型中的效用并探索其生物靶标
- 批准号:
2617469 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Studentship
Investigating the utility and exploring biological targets of enhanced micro wound healing compounds in 2D and 3D skin models
研究增强微伤口愈合化合物在 2D 和 3D 皮肤模型中的效用并探索其生物学靶标
- 批准号:
BB/W510427/1 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Training Grant
3D perfusion bioreactor for optimising osteostimulatory scaffolds for conditioning of autologous cells for enhanced bone grafting
用于优化骨刺激支架的 3D 灌注生物反应器,用于调节自体细胞以增强骨移植
- 批准号:
2590932 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Studentship
Phase-Contrast X-ray Micro-Computed Tomography for Enhanced 3D Microstructural Analysis of Bone and Joint Tissues
用于增强骨和关节组织 3D 微观结构分析的相差 X 射线微计算机断层扫描
- 批准号:
RTI-2022-00174 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Research Tools and Instruments
Navigation Platform with Enhanced Telemetry and Visualization, using Augmented Reality on a Hybrid 2D/Holographic 3D Display System
具有增强遥测和可视化功能的导航平台,在混合 2D/全息 3D 显示系统上使用增强现实
- 批准号:
571261-2022 - 财政年份:2021
- 资助金额:
$ 23.17万 - 项目类别:
Idea to Innovation














{{item.name}}会员




