One-Dimensional Functional Nanocrystals with Non-Precious-Metal Cores and Precious-Metal Shells
具有非贵金属核和贵金属壳的一维功能纳米晶体
基本信息
- 批准号:1809700
- 负责人:
- 金额:$ 33.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Abstract:Developing efficient and green energy conversion technologies is of strategic importance for the United States energy and environmental sustainability. Compared with conventional fossil fuel combustion devices, proton exchange membrane fuel cells (PEMFCs) hold great potentials for both transportation and stationary grid applications since they are cleaner, more affordable, and more reliable; they run with renewable hydrogen fuel; and they demonstrate high efficiency with minimized carbon emission. This project aims to develop an emerging class of nanostructured materials with one-dimensional architecture and core/shell structure which can maximize the benefit of PEMFCs. The rational design and precise preparation of such nanomaterials can significantly advance the understanding of both materials design and synthesis for efficient and cost-effective PEMFCs and many other applications, including batteries, electrolyzers, and electrochemical sensors. The outcome of this project can accelerate the large-scale application of PEMFCs, potentially transform the United States energy portfolio, and establish an eco-benign energy society. An education plan is designed to be integrated with research activities to promote teaching, training and learning at several levels, covering K-12, undergraduate and graduate students. Parts of the activities include educational outreach involving underrepresented minorities. The project can attract, build and retain a high-quality next-generation workforce in catalysis, energy technology and other science, technology, engineering, and math (STEM) fields.Technical Abstract: Proton exchange membrane fuel cells (PEMFCs), based on renewable hydrogen sources, play a critical role in establishing a sustainable and clean hydrogen energy economy to reduce our society's dependency on conventional fossil fuels and the related combustion technologies. Advanced PEMFCs suitable for large-scale transportation and stationary grid powers demand a nanostructured material that can be used to accelerate the cathodic oxygen reduction reaction (ORR) with a high activity over a sufficiently long period of time and with minimized platinum group metal usage. The objective of this project is to design and synthesize one-dimensional core-shell nanocrystals with non-precious-metal cores, by precisely controlling their core-shell material compositions and physical parameters (e.g. lengths of one-dimensional nanorods, core-shell interfaces, and shell profiles), to fundamentally understand the correlation of atomic level nanocrystal architecture to the favorable electrocatalytic properties. The Principle Investigator leverages the expertise in nanomaterials synthesis, structural characterization, electrochemistry and theoretical calculation, to primarily focus on four tasks: (1) Rationally designing and synthesizing cobalt phosphide-platinum core-shell nanorods with controlled lengths and shell profiles; (2) Tuning the core-shell interface and structural arrangements; (3) Optimizing the efficiency of nanocrystals by using transition metal doped cobalt phosphide nanorod cores; and (4) Understanding the design rules for optimized ORR conversion through a combination of electrochemical, spectroscopic, and computational approaches. The generated knowledge accelerates the development of new forms of nanomaterials by exploiting the mechanism controls of synthesis at the atomic level and uncovers how to correlate and control their functional activity and structural stability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:开发高效和绿色能源转换技术对美国能源和环境可持续性具有战略重要性。与传统的化石燃料燃烧装置相比,质子交换膜燃料电池(PEMFC)在运输和固定电网应用中具有巨大的潜力,因为它们更清洁,更便宜,更可靠;它们使用可再生氢燃料;它们表现出高效率,最小化碳排放。本项目旨在开发一类具有一维结构和核/壳结构的新兴纳米结构材料,以最大限度地发挥PEMFC的优势。这种纳米材料的合理设计和精确制备可以显着提高对高效和具有成本效益的PEMFC和许多其他应用(包括电池,电解槽和电化学传感器)的材料设计和合成的理解。该项目的成果可以加速PEMFC的大规模应用,潜在地改变美国的能源组合,并建立一个生态良性的能源社会。一项教育计划旨在与研究活动相结合,以促进包括K-12、本科生和研究生在内的各级教育的教学、培训和学习。部分活动包括涉及代表人数不足的少数群体的教育外联活动。该项目可以在催化、能源技术和其他科学、技术、工程和数学(STEM)领域吸引、培养和留住高素质的下一代劳动力。技术摘要: 质子交换膜燃料电池(PEMFC),基于可再生氢源,在建立可持续和清洁的氢能源经济,以减少我们的社会对传统化石燃料和相关燃烧技术的依赖方面发挥着关键作用。适用于大规模运输和固定电网电力的先进PEMFC需要纳米结构材料,该纳米结构材料可用于在足够长的时间段内以高活性加速阴极氧还原反应(ORR),并且使用最小化的铂族金属。本项目的目标是设计和合成具有非贵金属核的一维核-壳纳米晶体,通过精确控制其核-壳材料组成和物理参数(例如一维纳米棒的长度,核-壳界面和壳轮廓),从根本上了解原子级结构与有利的电催化性能的相关性。主要研究者利用在纳米材料合成、结构表征、电化学和理论计算方面的专业知识,主要专注于四项任务:(1)合理设计和合成具有可控长度和壳轮廓的磷化钴-铂核壳纳米棒;(2)调整核壳界面和结构排列;(3)优化纳米棒的结构和尺寸。(3)通过使用过渡金属掺杂的磷化钴纳米棒核来优化纳米晶体的效率;以及(4)通过电化学、光谱和计算方法的组合来理解优化ORR转化的设计规则。所产生的知识通过利用原子水平的合成机制控制来加速新型纳米材料的开发,并揭示了如何关联和控制其功能活性和结构稳定性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surfactant Removal for Colloidal Nanocrystal Catalysts Mediated by N-Heterocyclic Carbenes
- DOI:10.1021/jacs.0c12278
- 发表时间:2021-02-11
- 期刊:
- 影响因子:15
- 作者:Godbold, Perrin;Johnson, Grayson;Zhang, Sen
- 通讯作者:Zhang, Sen
Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion
- DOI:10.1021/jacs.0c02584
- 发表时间:2020-05-06
- 期刊:
- 影响因子:15
- 作者:Zhang, Yulu;Li, Na;Zhang, Sen
- 通讯作者:Zhang, Sen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sen Zhang其他文献
Prediction of burden descent speed in blast furnace based on extreme learning machine
基于极限学习机的高炉炉料下降速度预测
- DOI:
- 发表时间:
2018-01 - 期刊:
- 影响因子:1
- 作者:
Xin Guan;Yixin Yin;Sen Zhang;Haigang Zhang - 通讯作者:
Haigang Zhang
Narrow linewidth tunable V-cavity laser using self-injection method
采用自注入法的窄线宽可调谐V腔激光器
- DOI:
10.1364/oe.25.032957 - 发表时间:
2017-12 - 期刊:
- 影响因子:3.8
- 作者:
Xiaohai Xiong;Zhipeng Hu;Sen Zhang;Xiaolu Liao;Jian-jun He - 通讯作者:
Jian-jun He
Development of a compact torus injection system for the Keda Torus eXperiment
为 Keda Torus 实验开发紧凑型环面注射系统
- DOI:
10.1088/2058-6272/ac4e75 - 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Chen Chen;Tao Lan;Chijin Xiao;Ge Zhuang;Defeng Kong;Shoubiao Zhang;Sen Zhang;Weixing Ding;Zhengwei Wu;Wenzhe Mao;Jie Wu;Hangqi Xu;Jiaren Wu;Yiming Zu;Dong Zhang;Zian Wei;Xiaohui Wen;Chu Zhou;Ahdi Liu;Jinlin Xie;Hong Li;W;ong Liu - 通讯作者:
ong Liu
Silicon-on-Insulator Lateral DMOS With Potential Modulation Plates and Multiple Deep-Oxide Trenches
具有电位调制板和多个深氧化沟槽的绝缘体上硅横向 DMOS
- DOI:
10.1109/ted.2021.3105943 - 发表时间:
2021-10 - 期刊:
- 影响因子:3.1
- 作者:
Jie Ma;Long Zhang;Jing Zhu;Wangming Cui;Yongjiu Cui;Xinyu Liu;Weifeng Sun;Yan Gu;Nailong He;Sen Zhang;Mingfei Huang - 通讯作者:
Mingfei Huang
Initial offset boosting coexisting attractors in memristive multi-double-scroll Hopfield neural network
忆阻多双滚动 Hopfield 神经网络中的初始偏移增强共存吸引子
- DOI:
10.1007/s11071-020-06072-w - 发表时间:
2020-11 - 期刊:
- 影响因子:5.6
- 作者:
Sen Zhang;Jiahao Zheng;Xiaoping Wang;Zhigang Zeng;Shaobo He - 通讯作者:
Shaobo He
Sen Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sen Zhang', 18)}}的其他基金
CAREER: Modular Multi-Interface Nanocrystals for Electrocatalytic Oxidation of Biorenewable Alcohols
职业:用于生物可再生醇电催化氧化的模块化多界面纳米晶体
- 批准号:
2145220 - 财政年份:2022
- 资助金额:
$ 33.38万 - 项目类别:
Continuing Grant
Collaborative Research: Modulating Single-Atom Catalytic Centers in Well-Defined Metal Oxide Nanocrystal Surfaces for Oxygen Evolution Reaction
合作研究:调节明确金属氧化物纳米晶体表面的单原子催化中心以进行析氧反应
- 批准号:
2004808 - 财政年份:2020
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Functional cellulose nanocrystals for advanced engineering applications
用于先进工程应用的功能性纤维素纳米晶体
- 批准号:
562715-2021 - 财政年份:2021
- 资助金额:
$ 33.38万 - 项目类别:
University Undergraduate Student Research Awards
Market Assessment on Functional cellulose nanocrystals for advanced engineering applications
用于先进工程应用的功能性纤维素纳米晶体的市场评估
- 批准号:
555705-2020 - 财政年份:2020
- 资助金额:
$ 33.38万 - 项目类别:
Idea to Innovation
Modified cellulose nanocrystals for functional food systems
用于功能性食品系统的改性纤维素纳米晶体
- 批准号:
556483-2020 - 财政年份:2020
- 资助金额:
$ 33.38万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: Intrinsically Ferromagnetic Functional Cellulose Nanocrystals in Confinement
EAGER:限制中的本质铁磁功能纤维素纳米晶体
- 批准号:
1939289 - 财政年份:2019
- 资助金额:
$ 33.38万 - 项目类别:
Standard Grant
Application of cellulose nanocrystals as a functional filler in conductive gel adhesives
纤维素纳米晶作为功能填料在导电凝胶粘合剂中的应用
- 批准号:
522728-2017 - 财政年份:2017
- 资助金额:
$ 33.38万 - 项目类别:
Engage Grants Program
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 33.38万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/1 - 财政年份:2015
- 资助金额:
$ 33.38万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015653/1 - 财政年份:2015
- 资助金额:
$ 33.38万 - 项目类别:
Research Grant
Synthesis of functional NIR-emitting water dispersible silicon nanocrystals
功能性近红外发射水分散硅纳米晶的合成
- 批准号:
26390024 - 财政年份:2014
- 资助金额:
$ 33.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional control by formation control of organic nanocrystals and device development
通过有机纳米晶体的形成控制和器件开发进行功能控制
- 批准号:
24550204 - 财政年份:2012
- 资助金额:
$ 33.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)