Functional Nitride Nanocrystals for Quantum-Enhanced Technologies

用于量子增强技术的功能氮化物纳米晶体

基本信息

  • 批准号:
    EP/M015513/1
  • 负责人:
  • 金额:
    $ 47.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will transform the current research field of advanced nanoscale materials through developing a new generation of doped nitride nanomaterials in which their quantum properties can be controlled. These materials will allow access to quantum properties at room-temperature enabling and supporting the development of quantum technologies (QTs) in the long term. They also have a number of immediate applications (generating quantum-enhanced technologies) including in ICT devices and as biomarkers.In the 20th century the development of silicon-based electronics revolutionised the world, becoming the most pervasive technology behind modern-day life. In the 21st century the next revolutionary advance is predicted to come from the development of QTs. The most well-known quantum property is the dual particle-wavelike nature of electrons. This property is actually problematic in current technologies (e.g. transistors) which rely on electrons behaving as particles thus allowing them to be controlled using barriers. As these technologies are reduced in size these barriers start to fail as the wavelike properties of electrons come into play.In QTs the wavelike nature of particles will form the essential basis on which functionality is built, rather than being a problem to be overcome. Additional quantum effects such as 'spin' and the use of quantum mechanisms that allow the interaction between particles (exchange fields) provide further key properties and phenomena which these technologies will exploit. To realise this, materials must be developed which allow these properties to be enhanced and controlled. This can be achieved by reducing the size of a material down to a length scale comparable to the wavelength of the electron within it. In practice this requires the use of nanomaterials. The most successful materials developed to date are semiconductor nanocrystals (NCs) whose properties may be controlled through simple changes to size and shape.Furthermore early work has shown that by introducing magnetic dopants into these NCs, rich quantum behaviour can be observed including the ability to manipulate spin and magnetic properties using light. These are the only material systems to have shown such behaviour at room temperature, a significant requirement of any future QTs.The project will directly address the EPSRC Physical Science Grand Challenges of Nanoscale Design of Functional Materials and Quantum Physics for New QTs through advanced development of these and new NC materials. Using doping we will control the NC optical, electronic and magnetic properties and determine strategies for enhancing them based on the detailed characterisation and modelling we will undertake. Furthermore, we will address the issue of uptake of NCs by industry and those working in biological applications through exclusive study of nitride based materials. These systems, which have yet to be studied in any detail, offer an alternative to more the commonly studied systems which contain heavy metals such as Cd and Pb.Current understanding of the quantum behaviour exhibited in existing doped NC systems is incomplete, and the ability to predict and control properties remains limited. In our work we will therefore undertake a program of advanced characterisation ranging from fundamental studies of magnetic interactions in NC systems, using highly sensitive nanoSQUID devices, through to the incorporation and study of NCs within devices. Research into NCs within devices will provide the proof-of-principle required to guide and justify further developmental work that will form the basis of the future quantum-enhanced technologies.Bringing together this leading team of interdisciplinary researchers and industrial partners to address the key challenges that face physical scientists today, this coherent and focused programme offers a unique opportunity to not only advance the field but place the UK in the lead with regard to QTs.
该项目将通过开发可控制量子特性的新一代掺杂氮化物纳米材料,改变当前先进纳米材料的研究领域。这些材料将允许在室温下获得量子特性,从而长期支持量子技术(QTs)的发展。它们也有许多直接的应用(产生量子增强技术),包括在信息通信技术设备和作为生物标志物。在20世纪,硅基电子产品的发展彻底改变了世界,成为现代生活背后最普遍的技术。据预测,21世纪的下一个革命性进步将来自量子技术的发展。最著名的量子特性是电子的双粒子波性质。这种特性在当前的技术(例如晶体管)中实际上是有问题的,这些技术依赖于电子作为粒子的行为,从而允许使用屏障来控制它们。随着这些技术的缩小,电子的波状特性开始发挥作用,这些障碍开始失效。在量子力学中,粒子的波状性质将构成构建功能的基本基础,而不是一个需要克服的问题。额外的量子效应,如“自旋”和量子机制的使用,允许粒子之间的相互作用(交换场)提供了这些技术将利用的进一步的关键特性和现象。为了实现这一点,必须开发出能够增强和控制这些特性的材料。这可以通过将材料的尺寸缩小到与其中电子的波长相当的长度尺度来实现。在实践中,这需要使用纳米材料。迄今为止,最成功的材料是半导体纳米晶体(NCs),其特性可以通过简单的大小和形状变化来控制。此外,早期的研究表明,通过在这些nc中引入磁性掺杂剂,可以观察到丰富的量子行为,包括利用光操纵自旋和磁性质的能力。这是唯一在室温下表现出这种行为的材料系统,这是任何未来量子力学的重要要求。该项目将通过这些和新的NC材料的先进开发,直接解决EPSRC物理科学纳米级功能材料设计和量子物理新量子管的重大挑战。使用掺杂,我们将控制NC的光学、电子和磁性能,并根据我们将进行的详细表征和建模,确定增强它们的策略。此外,我们将通过对氮基材料的独家研究,解决工业和生物应用领域的nc吸收问题。这些系统尚未进行详细的研究,但它们提供了一种替代方法,可以替代那些通常被研究的含有镉和铅等重金属的系统。目前对现有掺杂NC系统中表现出的量子行为的理解是不完整的,并且预测和控制性能的能力仍然有限。因此,在我们的工作中,我们将开展一项高级表征计划,从NC系统中磁相互作用的基础研究,使用高灵敏度的nanoSQUID设备,到设备内NC的整合和研究。对设备内的NCs的研究将提供指导和证明进一步发展工作所需的原理证明,这些工作将构成未来量子增强技术的基础。将跨学科研究人员和工业合作伙伴的领先团队聚集在一起,解决当今物理科学家面临的关键挑战,这个连贯且重点突出的项目不仅为推进该领域提供了独特的机会,而且使英国在量子力学方面处于领先地位。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carrier density tuning in CuS nanoparticles and thin films by Zn doping via ion exchange.
通过离子交换掺杂锌来调节 CuS 纳米粒子和薄膜中的载流子密度。
  • DOI:
    10.1039/d3nr00139c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Shukla A
  • 通讯作者:
    Shukla A
Nanoscale LiZnN - Luminescent Half-Heusler Quantum Dots.
  • DOI:
    10.1021/acsaom.3c00065
  • 发表时间:
    2023-06-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carter-Searjeant S;Fairclough SM;Haigh SJ;Zou Y;Curry RJ;Taylor PN;Huang C;Fleck R;Machado P;Kirkland AI;Green MA
  • 通讯作者:
    Green MA
Synthesis of IR-emitting HgTe quantum dots using an ionic liquid-based tellurium precursor.
  • DOI:
    10.1039/d1na00291k
  • 发表时间:
    2021-07-13
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
  • 通讯作者:
The Biosynthesis of Infrared-Emitting Quantum Dots in Allium Fistulosum.
  • DOI:
    10.1038/srep20480
  • 发表时间:
    2016-02-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Green M;Haigh SJ;Lewis EA;Sandiford L;Burkitt-Gray M;Fleck R;Vizcay-Barrena G;Jensen L;Mirzai H;Curry RJ;Dailey LA
  • 通讯作者:
    Dailey LA
Structural investigations into colour-tuneable fluorescent InZnP-based quantum dots from zinc carboxylate and aminophosphine precursors.
对来自羧酸锌和氨基膦前体的可调色荧光 InZnP 基量子点的结构研究。
  • DOI:
    10.1039/d2nr02803d
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Burkitt-Gray M
  • 通讯作者:
    Burkitt-Gray M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Curry其他文献

Richard Curry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Curry', 18)}}的其他基金

Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
  • 批准号:
    EP/X035093/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
  • 批准号:
    EP/V008188/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
  • 批准号:
    EP/V001914/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
  • 批准号:
    NE/T014792/1
  • 财政年份:
    2020
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
  • 批准号:
    EP/T01914X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
  • 批准号:
    EP/R025576/1
  • 财政年份:
    2018
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
  • 批准号:
    EP/N020057/2
  • 财政年份:
    2017
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
  • 批准号:
    EP/M015513/2
  • 财政年份:
    2017
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
  • 批准号:
    EP/N015215/1
  • 财政年份:
    2016
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
  • 批准号:
    EP/N020057/1
  • 财政年份:
    2016
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant

相似国自然基金

基于稀氮砷化镓(Dilute nitride GaNAs)的近红外自旋放大纳米线激光器的研究
  • 批准号:
    61905071
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016218/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016749/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
  • 批准号:
    2336038
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Standard Grant
CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
  • 批准号:
    2340405
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Continuing Grant
CAREER: Ultrawide Bandgap Aluminum Nitride FETs for Power Electronics
职业:用于电力电子器件的超宽带隙氮化铝 FET
  • 批准号:
    2338604
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Continuing Grant
Segregation of alloy and dopant atoms at defects in nitride materials
氮化物材料缺陷处合金和掺杂原子的偏析
  • 批准号:
    EP/Y00423X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
  • 批准号:
    EP/X036901/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Segregation of alloy and dopant atoms at defects in nitride materials
氮化物材料缺陷处合金和掺杂原子的偏析
  • 批准号:
    EP/Y004213/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Research Grant
Conference: International Workshop on Nitride Semiconductors 2024
会议:2024 年氮化物半导体国际研讨会
  • 批准号:
    2421101
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Standard Grant
Infrared photonics using ferroelectric scandium-aluminum nitride semiconductors
使用铁电钪铝氮化物半导体的红外光子学
  • 批准号:
    2414283
  • 财政年份:
    2024
  • 资助金额:
    $ 47.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了