Imaging electron hydrodynamics in graphene

石墨烯中的电子流体动力学成像

基本信息

项目摘要

Non-Technical AbstractOur understanding of how electrons move in materials is based on simple, semiclassical, equations where all electron interactions - with the lattice, with disorder, and with each other - is done by changing the description of the electron into a different particle that accounts for the interactions. However, in real materials with small disorder or strong electron-electron interactions, a continuous hydrodynamic description is a better model where the electrons are said to act like a liquid. Only a handful of experiments have recently detected the presence of such a strange electron liquid with many new theories to explain it, which means this is the beginning of a whole new field of novel and useful technologies. This proposal is driven by a unique opportunity at UCSB to combine a new, ultra-clean materials system (graphite gated monolayer graphene) with a newly developed, high sensitivity scanned probe technique that can directly probe the novel electron flows down to the nanoscale. New electron phenomena will be directly observed such as viscosity-driven whirlpools and the onset of turbulence of electron flows. There is also an opportunity to match these tiny electron flow patterns with large scale electrical transport measurements. The hydrodynamic regime presents an opportunity to build novel devices based on manipulating electron fluid phenomena that have never before been imagined. This research is also tightly coupled with a strong educational plan that aims to imbue the next generation of scientists with an excitement for novel electronic materials, quantum sensors, and their applications. Technical AbstractElectron flow in low dimensional systems is typically described by semiclassical equations of motion, in which all electron interactions - with the lattice, with disorder, and with each other - leads only to a dressing of the bare electron into an electron-like quasiparticle whose dynamics determine current flow. However, in quantum critical systems, strong inter-electron collisions can wash away the individual electronic degrees of freedom - the electron-electron collision length is much shorter than all other dimensions. Macroscopic observables such as electrical and thermal conductivity are then described by the equations of fluid mechanics, and the macroscopic parameters-density, viscosity, and mean velocity-which emerge from the microscopic collisions between electrons. Recently, several groups have reported signatures of the hydrodynamic regime in graphene - a material whose band structure mimics the gapless dispersion of a quantum critical point. However, these experiments have all focused on macroscopic transport properties. As such they are unable to directly probe the emergence of hydrodynamic flow on all the relevant length scales. Here, the principal investigators propose to combine state-of-the-art graphene devices with an order of magnitude higher mobility than previously realized along with state-of-the art local magnetometry, utilizing nitrogen-vacancy center defects in diamond, to probe the emergence of hydrodynamic flow across the relevant length scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要我们对电子在材料中运动的理解是基于简单的半经典方程,在这些方程中,所有电子--与晶格、与无序以及与彼此--的相互作用都是通过将电子的描述改变为解释这些相互作用的不同粒子来完成的。然而,在具有小无序或强电子-电子相互作用的真实材料中,连续流体动力学描述是一个更好的模型,其中电子被认为是像液体一样的行为。最近只有少数几个实验检测到了如此奇怪的电子液体的存在,并有许多新的理论来解释它,这意味着这是一个全新领域的新的和有用的技术的开始。这一提议是由UCSB的一个独特机会推动的,该机会将一种新的超清洁材料系统(石墨门控单层石墨烯)与新开发的高灵敏度扫描探针技术相结合,该技术可以直接探测下至纳米级的新电子流动。将直接观察到新的电子现象,如粘性驱动的漩涡和电子流动的湍流开始。也有机会将这些微小的电子流动模式与大规模的电子传输测量相匹配。流体力学体系提供了一个机会,可以基于以前从未想象过的操纵电子流体现象来建造新的设备。这项研究还与一项强有力的教育计划紧密结合在一起,该计划旨在让下一代科学家对新型电子材料、量子传感器及其应用充满兴趣。技术摘要低维系统中的电子流通常由半经典运动方程描述,其中所有的电子相互作用--与晶格、与无序以及相互作用--只导致将裸电子装扮成类电子准粒子,其动力学决定了电流流动。然而,在量子临界系统中,强烈的电子间碰撞可以冲走单个电子的自由度--电子-电子碰撞长度比所有其他维度都要短得多。然后用流体力学方程描述宏观观测,如电导率和热导率,以及从电子之间的微观碰撞中产生的宏观参数-密度、粘度和平均速度。最近,几个小组报告了石墨烯的流体动力学状态的特征--石墨烯是一种能带结构模拟量子临界点的无间隙弥散的材料。然而,这些实验都集中在宏观输运性质上。因此,他们无法在所有相关长度尺度上直接探测流体动力流动的出现。在这里,首席研究人员建议将最先进的石墨烯设备与最先进的局部磁测量技术结合起来,利用钻石中的氮空位中心缺陷,探索相关长度范围内流体动力学流动的出现。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imaging the Breakdown of Ohmic Transport in Graphene
  • DOI:
    10.1103/physrevlett.129.087701
  • 发表时间:
    2022-08-17
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jenkins, Alec;Baumann, Susanne;Jayich, Ania C. Bleszynski
  • 通讯作者:
    Jayich, Ania C. Bleszynski
Current distribution in a slit connecting two graphene half-planes
连接两个石墨烯半平面的狭缝中的电流分布
  • DOI:
    10.1103/physrevb.102.125404
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pershoguba, Sergey S.;Young, Andrea F.;Glazman, Leonid I.
  • 通讯作者:
    Glazman, Leonid I.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ania Bleszynski Jayich其他文献

Quantum-coherent nanoscience
量子相干纳米科学
  • DOI:
    10.1038/s41565-021-00994-1
  • 发表时间:
    2021-11-29
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Andreas J. Heinrich;William D. Oliver;Lieven M. K. Vandersypen;Arzhang Ardavan;Roberta Sessoli;Daniel Loss;Ania Bleszynski Jayich;Joaquin Fernandez-Rossier;Arne Laucht;Andrea Morello
  • 通讯作者:
    Andrea Morello
Frozen motion
定格动作
  • DOI:
    10.1038/nphys3446
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Ania Bleszynski Jayich
  • 通讯作者:
    Ania Bleszynski Jayich

Ania Bleszynski Jayich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ania Bleszynski Jayich', 18)}}的其他基金

Enabling Quantum Leap: Q-AMASE-i: Quantum Foundry at UCSB
实现量子飞跃:Q-AMASE-i:UCSB 的量子铸造厂
  • 批准号:
    1906325
  • 财政年份:
    2019
  • 资助金额:
    $ 66万
  • 项目类别:
    Cooperative Agreement
Chiral Quantum Networks
手性量子网络
  • 批准号:
    1820938
  • 财政年份:
    2018
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
CAREER: Mechanical Control of Single Spins for Sensing and Quantum Information Processing
职业:用于传感和量子信息处理的单自旋机械控制
  • 批准号:
    1352660
  • 财政年份:
    2014
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant

相似国自然基金

Muon--electron转换过程的实验研究
  • 批准号:
    11335009
  • 批准年份:
    2013
  • 资助金额:
    360.0 万元
  • 项目类别:
    重点项目
Potyvirus柱状内含体-胞间连丝连接装置的三维重构及病毒胞间运动研究
  • 批准号:
    31070129
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
  • 批准号:
    30970527
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
废水中难降解有机污染物的电子束辐照降解机理
  • 批准号:
    50578090
  • 批准年份:
    2005
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
铁磁性超导体的微观电子态和相图的理论研究
  • 批准号:
    10574063
  • 批准年份:
    2005
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Quantum Hydrodynamics: From Electron Fluids To Chiral Active Matter
职业:量子流体动力学:从电子流体到手性活性物质
  • 批准号:
    1944967
  • 财政年份:
    2020
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Hydrodynamic behaviour of electrons on the surface of superfluid helium
超流氦表面电子的流体动力学行为
  • 批准号:
    18K13506
  • 财政年份:
    2018
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Theoretical Study of Physical Processes and Interactions in Large Scale Jets
大型射流物理过程和相互作用的理论研究
  • 批准号:
    16540215
  • 财政年份:
    2004
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on high energy density plasmas produced by peta watt laser
拍瓦激光器产生高能量密度等离子体的研究
  • 批准号:
    15GS0214
  • 财政年份:
    2003
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Creative Scientific Research
Relativistic Electron Magneto Hydrodynamics (E-MHD)
相对论电子磁流体动力学 (E-MHD)
  • 批准号:
    12480120
  • 财政年份:
    2000
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
HYDRODYNAMICS OF AQUEOUS HUMOR OUTFLOW
房水流出的流体动力学
  • 批准号:
    6864419
  • 财政年份:
    1993
  • 资助金额:
    $ 66万
  • 项目类别:
HYDRODYNAMICS OF AQUEOUS HUMOR OUTFLOW
房水流出的流体动力学
  • 批准号:
    7051990
  • 财政年份:
    1993
  • 资助金额:
    $ 66万
  • 项目类别:
HYDRODYNAMICS OF AQUEOUS HUMOR OUTFLOW
房水流出的流体动力学
  • 批准号:
    6342616
  • 财政年份:
    1993
  • 资助金额:
    $ 66万
  • 项目类别:
HYDRODYNAMICS OF AQUEOUS HUMOR OUTFLOW
房水流出的流体动力学
  • 批准号:
    6730130
  • 财政年份:
    1993
  • 资助金额:
    $ 66万
  • 项目类别:
HYDRODYNAMICS OF AQUEOUS HUMOR OUTFLOW
房水流出的流体动力学
  • 批准号:
    6138165
  • 财政年份:
    1993
  • 资助金额:
    $ 66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了