CAREER: Quantum Hydrodynamics: From Electron Fluids To Chiral Active Matter
职业:量子流体动力学:从电子流体到手性活性物质
基本信息
- 批准号:1944967
- 负责人:
- 金额:$ 51.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis career award supports research and education on the collective properties quantum mechanical fluids and active matter systems. The study of quantum mechanical phenomena on the mesoscopic scale, intermediate between the macroscope and the scales of atoms, holds promise to advance understanding of how the unusual quantum world connects with the familiar macroscopic world and may lead to new electronic device technologies. Robust quantum effects can manifest at sufficiently low temperatures where essentially the whole system can behave like a single quantum mechanical entity that can exhibit unusual and counterintuitive properties. Superconductivity is one example of such a quantum state of matter. The electrons in superconducting states behave like fluids that can flow without viscosity and so, without dissipation, a phenomenon not displayed by the classical fluids of everyday experience. Theoretical understanding of quantum fluids is built on hydrodynamics, which is the theory of classical fluid motion under external forces. The PI and his research team will focus on developing theoretical descriptions of such states as modifications of the classical hydrodynamics in a conceptually transparent way that captures the unique properties of the macroscopic quantum state. The PI’s effort in this direction will build toward generalizing the approach for other quantum liquids, including those that arise in electrons that are trapped between two semiconductor layers and exposed to a perpendicular magnetic field, quantum Hall fluids. Success of this long-term objective will hopefully uncover hitherto untapped mesoscale phenomena that can be harnessed to develop the technology of a new generation of quantum devices. Inspired by the appearance of dissipation-free phenomena analogous to quantum fluids, the PI will investigate fluids made of self-propelled particles that can autonomously change direction as they move. These chiral active matter systems obey the laws of classical mechanics but are far from the tranquil state of equilibrium. The PI aims to investigate the extent to which they may be able to serve as simulators of quantum fluids. An important component of this project is to disseminate the research effort via three channels of education and training (a) a special topics course on fluid dynamics applied to condensed matter systems aimed at graduate students and senior undergraduates, (b) Research opportunities for undergraduates and high school students, and (c) Interactive demonstrations based lectures for high school students on basic fluid dynamics principles that underpin the research effort. This component will seek to remedy the resource scarcity for setting up demonstrations in many of the schools under the ambit of the College-Now program run at City College of New York.TECHNICAL SUMMARYThis career award supports research and education on the collective properties of mesoscopic quantum systems and chiral active matter systems. Understanding the transport properties of ground-state quantum fluids such as superconductors and Quantum Hall (QH) fluids is not only important for fundamental physics but also central to the development of the next generation of low dissipation electronic devices. In this project, the PI and his research team will investigate the quantum modifications to classical hydrodynamics that arise beyond the ideal fluid regime due to dominant non-linear and higher gradient viscous effects. The non-linear nature of the theory facilitates the study of the strong interaction effects of quantum many-body systems. The PI will focus on three interrelated objectives that share a common quantum hydrodynamic framework: (I) Study the phenomenology of QH hydrodynamics that includes higher gradient effects such as odd/Hall viscosity: Developing a hydrodynamical theory of QH fluids that includes higher gradient odd viscous effects will bring new insight into the fluid nature of QH state in the form of non-linear effects and free surface dynamics which has so far remained outside analysis based on topological field theories. (II) Incorporate non-linear fluid dynamical effects in the transport properties in viscous electron fluids: The proposed research in viscous electron fluids will enable the study of non-linear effects, such as solitons, in mesoscopic transport. This research direction is timely due to the recent experimental advances in mesoscopic quantum systems such as Gallium Arsenide and Graphene, which are host to viscous electron fluids. (III) Determine the mechanical properties and hydrodynamic instabilities of non-equilibrium chiral active fluids: Chiral active fluids despite being non-equilibrium classical systems, share many properties with QH fluids and viscous electron fluids and can serve as analog simulators. Understanding the mechanical response and instabilities of chiral active matter will not only help design active matter experiments that can be used to understand quantum fluids but can also lead to the design of new synthetic active materials with remarkable properties. The PI’s long-term effort to develop the semiclassical theory of QH fluids will hopefully bring new understanding in the development of the semiclassical theory of general quantum fluids, which has been a long open problem.The educational objectives of this project will be achieved via three main vehicles: 1) A topical course on fluid dynamics applicable to condensed matter systems for graduate and senior undergraduate students that will be offered at the City College of New York. 2) Research opportunities in the field of theoretical fluid dynamics applied to condensed matter systems for City College of New York undergraduate students and High School for Math Science and Engineering high school students. 3) Interactive and demonstration-based talks on fluid dynamics for New York City high school students in collaboration with the College-Now program, which serves students from inner-city schools and underrepresented groups to facilitate a smooth transition from school to the first years of college.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业奖支持关于量子力学流体和活性物质系统的集体特性的研究和教育。介观尺度上的量子力学现象的研究,介于宏观尺度和原子尺度之间,有望促进对不寻常的量子世界如何与熟悉的宏观世界联系的理解,并可能导致新的电子设备技术。强大的量子效应可以在足够低的温度下表现出来,从本质上讲,整个系统可以表现得像一个单一的量子力学实体,可以表现出不同寻常的和违反直觉的特性。超导性就是这种物质量子态的一个例子。超导状态下的电子表现得像流体一样,可以在没有粘度的情况下流动,因此,没有耗散,这是日常经验中的经典流体所没有的现象。量子流体的理论认识是建立在流体力学的基础上的,流体力学是在外力作用下的经典流体运动理论。PI和他的研究团队将专注于发展这些状态的理论描述,如经典流体力学的修改,以概念透明的方式捕捉宏观量子态的独特特性。PI在这个方向上的努力将建立在推广其他量子液体的方法上,包括那些被困在两个半导体层之间并暴露在垂直磁场中的电子,量子霍尔流体。这一长期目标的成功将有望揭示迄今为止尚未开发的中尺度现象,这些现象可以用来开发新一代量子设备的技术。受到类似量子流体的无耗散现象的启发,PI将研究由自推进粒子组成的流体,这些粒子可以在移动时自主改变方向。这些手性活性物质体系服从经典力学定律,但远未达到平静的平衡状态。PI的目标是调查它们在多大程度上能够作为量子流体的模拟器。该项目的一个重要组成部分是通过三个教育和培训渠道传播研究成果(a)面向研究生和大四本科生的凝聚态系统流体动力学专题课程,(b)面向本科生和高中生的研究机会,以及(c)面向高中生的基于交互演示的流体动力学基本原理讲座,作为研究工作的基础。在纽约城市学院开展的“现在就上大学”项目的范围内,在许多学校开展示范活动,以解决资源短缺的问题。该职业奖支持介观量子系统和手性活性物质系统的集体性质的研究和教育。了解超导体和量子霍尔(QH)流体等基态量子流体的输运性质不仅对基础物理学很重要,而且对下一代低耗散电子器件的发展也很重要。在这个项目中,PI和他的研究小组将研究经典流体力学的量子修正,这些量子修正是由于主要的非线性和高梯度粘性效应而产生的,超出了理想流体状态。该理论的非线性性质有助于研究量子多体系统的强相互作用效应。PI将专注于共享共同量子流体动力学框架的三个相互关联的目标:(I)研究包括奇/霍尔粘度等更高梯度效应的QH流体动力学现象学;发展包含高梯度奇粘效应的QH流体流体力学理论,将以非线性效应和自由表面动力学的形式,为QH状态的流体性质带来新的认识,这是迄今为止基于拓扑场理论的分析之外的领域。(II)将非线性流体动力学效应纳入粘性电子流体的输运性质:粘性电子流体的研究将使介观输运中的非线性效应(如孤子)的研究成为可能。由于砷化镓和石墨烯等介观量子系统是粘性电子流体的宿主,因此该研究方向是及时的。(三)确定非平衡手性活性流体的力学性质和流体动力学不稳定性:手性活性流体虽然是非平衡经典体系,但与QH流体和粘性电子流体具有许多相同的性质,可以作为模拟模拟器。了解手性活性物质的力学响应和不稳定性,不仅有助于设计可用于理解量子流体的活性物质实验,而且有助于设计具有卓越性能的新型合成活性材料。PI长期致力于发展QH流体的半经典理论,有望为长期开放的一般量子流体半经典理论的发展带来新的认识。该项目的教育目标将通过三个主要载体来实现:1)为纽约城市学院的研究生和高年级本科生提供适用于凝聚态系统的流体动力学专题课程。2)为纽约城市学院的本科生和高中数学科学与工程高中的学生提供应用于凝聚态系统的理论流体动力学领域的研究机会。3)与college - now项目合作,为纽约市高中生提供流体动力学互动和演示讲座,该项目为来自市中心学校和代表性不足群体的学生提供服务,以促进从中学到大学第一年的顺利过渡。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ungappable edge theories with finite-dimensional Hilbert spaces
- DOI:10.1103/physrevb.105.155137
- 发表时间:2021-09
- 期刊:
- 影响因子:3.7
- 作者:S. Ganeshan;M. Levin
- 通讯作者:S. Ganeshan;M. Levin
Nonlinear shallow water dynamics with odd viscosity
具有奇粘度的非线性浅水动力学
- DOI:10.1103/physrevfluids.6.l092401
- 发表时间:2021
- 期刊:
- 影响因子:2.7
- 作者:Monteiro, Gustavo M.;Ganeshan, Sriram
- 通讯作者:Ganeshan, Sriram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sriram Ganeshan其他文献
Sriram Ganeshan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Hydrodynamics of quantum fluids
量子流体的流体动力学
- 批准号:
DP240101033 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Discovery Projects
Pioneering the frontier of quantum hydrodynamics and turbulence
开拓量子流体动力学和湍流的前沿
- 批准号:
23K03305 - 财政年份:2023
- 资助金额:
$ 51.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: An Ultracold Atom Platform for Quantum Hydrodynamics Research and Undergraduate Training in Quantum Technology
LEAPS-MPS:用于量子流体动力学研究和量子技术本科生培训的超冷原子平台
- 批准号:
2137848 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Standard Grant
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Discovery Grants Program - Individual
Hydrodynamics of quantum matter
量子物质的流体动力学
- 批准号:
RGPIN-2020-05842 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum gravity and hydrodynamics: a surprising partnership
量子引力和流体动力学:令人惊讶的合作关系
- 批准号:
RGPIN-2021-02941 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Discovery Grants Program - Individual
Hydrodynamics of quantum matter
量子物质的流体动力学
- 批准号:
RGPAS-2020-00060 - 财政年份:2022
- 资助金额:
$ 51.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Hydrodynamics of quantum matter
量子物质的流体动力学
- 批准号:
RGPAS-2020-00060 - 财政年份:2021
- 资助金额:
$ 51.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
- 批准号:
RGPIN-2020-07070 - 财政年份:2021
- 资助金额:
$ 51.4万 - 项目类别:
Discovery Grants Program - Individual
Quantum gravity and hydrodynamics: a surprising partnership
量子引力和流体动力学:令人惊讶的合作关系
- 批准号:
RGPIN-2021-02941 - 财政年份:2021
- 资助金额:
$ 51.4万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




