Enabling Quantum Leap: Q-AMASE-i: Quantum Foundry at UCSB

实现量子飞跃:Q-AMASE-i:UCSB 的量子铸造厂

基本信息

项目摘要

Nontechnical Abstract: This project establishes the Quantum Foundry at UC Santa Barbara---a next generation foundry that develops materials and interfaces hosting the coherent quantum states needed to power the coming age of quantum-based electronics. Emerging technological frontiers in quantum computation, quantum sensing, and other quantum information-based applications require moving beyond conventional electronics, which address only a single classical state (e.g. a bit), and to instead access multiple superimposed or entangled quantum states (e.g. a quantum bit). Harnessing this multistate paradigm of quantum information requires the development of new materials that are capable of both hosting these complex quantum states and of protecting their information from being lost via environmental decoherence. The Quantum Foundry addresses this challenge through (1) the creation of tools for creating and measuring materials possessing protected quantum coherent states and (2) through developing these materials such that the decoherence of their controlled quantum states can be avoided. Research conducted in the Foundry develops materials that host quantum electronic states with natively protected coherence, further stabilizes these protected states at interfaces, and also engineers the means of propagating their quantum coherence into conventional information networks. These topics are core interests of the Foundry's industrial partners, all of whom are intertwined within all levels of the Foundry's operations to maximize its impact in the growing quantum information technologies sector. Key to this is the Foundry's program of training a diverse quantum workforce capable of driving innovation at the frontiers of this new sector. In particular, a reimagined and interdisciplinary program of graduate training in quantum information science combined with quantum-based undergraduate research training and outreach activities targeted at diverse communities is a focus of the Quantum Foundry's mission. Technical Abstract: This project establishes a materials foundry for the coming age of quantum information-based electronics. Through integrating a convergent array of interdisciplinary expertise, enabling critical new tool development, and leveraging a vast network of materials development infrastructure at UCSB and with network partners, the Quantum Foundry at UC Santa Barbara aims to develop the materials required to form the backbone of quantum information-based devices and applications (e.g., quantum-based computing and sensing). Key to realizing this vision, the Foundry develops both bulk crystalline and thin film materials that natively host quantum electronic states with protected coherence (such as non-abelian anyon states), functionalizes these and other entangled/superposition states at scalable interfaces, and engineers the means of propagating their quantum coherence across networks. Examples range from the development of new forms of topological superconductors hosting topologically protected non-abelian states to developing platforms for manipulating highly coherent, localized quantum states. The Foundry innovates and harnesses new tools for growing pristine materials that engender coherent quantum states as well as new instruments for characterizing their coherence and entanglement. Interdisciplinary theoretical, computational, and data science efforts further underpin and guide the Foundry's research, and industrial partners are intertwined throughout the Foundry's operation. Synergies with these industry partners are core to the Foundry's vision of accelerating the development of the nation's quantum technologies economic sector, and a key goal of the Foundry is the training of a quantum-capable workforce. The Foundry's novel graduate training program in quantum information science and its quantum-based undergraduate research training/outreach activities are targeted at building a diverse, next generation workforce---one capable of harnessing the scientific and commercial opportunities that arise as quantum-based technologies develop.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:该项目在加州大学圣巴巴拉分校建立了量子铸造厂--这是一家下一代铸造厂,开发承载相干量子态的材料和接口,为即将到来的量子电子时代提供动力。 量子计算、量子传感和其他基于量子信息的应用中的新兴技术前沿需要超越传统的电子学,传统的电子学只处理单个经典状态(例如比特),而是访问多个叠加或纠缠的量子状态(例如量子比特)。 利用这种量子信息的多态范式需要开发新材料,这些新材料既能够承载这些复杂的量子态,又能够保护它们的信息不因环境退相干而丢失。 量子铸造厂通过以下方式应对这一挑战:(1)创建用于创建和测量具有受保护量子相干态的材料的工具;(2)开发这些材料,以避免其受控量子态的退相干。 在铸造厂进行的研究开发了具有天然保护相干性的量子电子态的材料,进一步稳定了界面处的这些受保护状态,并设计了将其量子相干性传播到传统信息网络中的方法。这些主题是Foundry工业合作伙伴的核心利益,所有这些合作伙伴都在Foundry运营的各个层面相互交织,以最大限度地发挥其在不断增长的量子信息技术领域的影响力。 这一点的关键是Foundry培训多元化量子劳动力的计划,这些劳动力能够在这个新领域的前沿推动创新。 特别是,量子信息科学研究生培训的重新设想和跨学科计划,结合基于量子的本科生研究培训和针对不同社区的推广活动,是量子铸造厂使命的重点。技术摘要:该项目为即将到来的基于量子信息的电子时代建立了一个材料铸造厂。通过整合跨学科专业知识的聚合阵列,实现关键的新工具开发,并利用UCSB和网络合作伙伴的材料开发基础设施的庞大网络,加州大学圣巴巴拉的量子铸造厂旨在开发形成量子信息所需的材料。基于量子的计算和感测)。 实现这一愿景的关键是,Foundry开发了块状晶体和薄膜材料,这些材料本身具有受保护的相干性(如非阿贝尔任意子态)的量子电子态,在可扩展的界面上功能化这些和其他纠缠/叠加态,并设计了在网络中传播量子相干性的方法。 例子包括从发展新形式的拓扑超导体托管拓扑保护的非阿贝尔状态到开发操纵高度相干的局域化量子态的平台。Foundry创新并利用新工具来生长产生相干量子态的原始材料,以及表征其相干性和纠缠的新仪器。跨学科的理论、计算和数据科学工作进一步巩固和指导了Foundry的研究,工业合作伙伴在整个Foundry的运营过程中相互交织。 与这些行业合作伙伴的协同作用是Foundry加速国家量子技术经济部门发展愿景的核心,而Foundry的一个关键目标是培养一支具有量子能力的员工队伍。 铸造厂在量子信息科学方面的新颖研究生培训计划及其基于量子的本科生研究培训/推广活动旨在建立一个多样化的,下一代劳动力-能够利用量子技术带来的科学和商业机会的劳动力-该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal optomechanical coupling strength in multimembrane systems
多膜系统中的最佳光机耦合强度
  • DOI:
    10.1103/physreva.101.033829
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Newsom, David C.;Luna, Fernando;Fedoseev, Vitaly;Löffler, Wolfgang;Bouwmeester, Dirk
  • 通讯作者:
    Bouwmeester, Dirk
Probing interacting two-level systems with rare-earth ions
用稀土离子探测相互作用的两能级系统
  • DOI:
    10.1103/physrevb.101.014209
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ding, Dapeng;van Driel, David;Pereira, Lino M.;Bauters, Jared F.;Heck, Martijn J.;Welker, Gesa;de Dood, Michiel J.;Vantomme, André;Bowers, John E.;Löffler, Wolfgang
  • 通讯作者:
    Löffler, Wolfgang
Probing Nonexponential Decay in Floquet–Bloch Bands
探索 Floquet–Bloch 带中的非指数衰减
  • DOI:
    10.1515/zna-2020-0020
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cao, Alec;Fujiwara, Cora J.;Sajjad, Roshan;Simmons, Ethan Q.;Lindroth, Eva;Weld, David
  • 通讯作者:
    Weld, David
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ania Bleszynski Jayich其他文献

Quantum-coherent nanoscience
量子相干纳米科学
  • DOI:
    10.1038/s41565-021-00994-1
  • 发表时间:
    2021-11-29
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Andreas J. Heinrich;William D. Oliver;Lieven M. K. Vandersypen;Arzhang Ardavan;Roberta Sessoli;Daniel Loss;Ania Bleszynski Jayich;Joaquin Fernandez-Rossier;Arne Laucht;Andrea Morello
  • 通讯作者:
    Andrea Morello
Frozen motion
定格动作
  • DOI:
    10.1038/nphys3446
  • 发表时间:
    2015-09-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Ania Bleszynski Jayich
  • 通讯作者:
    Ania Bleszynski Jayich

Ania Bleszynski Jayich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ania Bleszynski Jayich', 18)}}的其他基金

Chiral Quantum Networks
手性量子网络
  • 批准号:
    1820938
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
Imaging electron hydrodynamics in graphene
石墨烯中的电子流体动力学成像
  • 批准号:
    1810544
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Continuing Grant
CAREER: Mechanical Control of Single Spins for Sensing and Quantum Information Processing
职业:用于传感和量子信息处理的单自旋机械控制
  • 批准号:
    1352660
  • 财政年份:
    2014
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Enabling Quantum Leap: Q-AMASE-i: MonArk Quantum Foundry: Rapidly Incubating Translational Advances in QISE with a 2D-Quantum Materials Pipeline (2D-QMaP)
实现量子飞跃:Q-AMASE-i:MonArk Quantum Foundry:通过 2D 量子材料管道 (2D-QMaP) 快速孵化 QISE 的转化进展
  • 批准号:
    1906383
  • 财政年份:
    2021
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Cooperative Agreement
Enabling Quantum Leap: Using the Scientific Method to Create Theatre About Science
实现量子飞跃:用科学方法打造科学剧场
  • 批准号:
    1830704
  • 财政年份:
    2019
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
Enabling Quantum Leap: Quantum algorithms for quantum chemistry and materials
实现量子飞跃:量子化学和材料的量子算法
  • 批准号:
    1909531
  • 财政年份:
    2019
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Temperature dependence of optical nonlinearities of monolayer transition-metal dichalcogenides
EAGER:实现量子飞跃:单层过渡金属二硫属化物光学非线性的温度依赖性
  • 批准号:
    1838497
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Electrically tunable, long-distance coherent coupling between room temperature qubits mediated by magnons in low-dimensional magnets
EAGER:实现量子飞跃:由低维磁体中的磁振子介导的室温量子位之间的电可调、长距离相干耦合
  • 批准号:
    1838513
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Topological Nanoparticles as Potential Room-Temperature Qubits
EAGER:实现量子飞跃:拓扑纳米粒子作为潜在的室温量子位
  • 批准号:
    1838504
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Organic Magnonics for room temperature Quantum Logic
EAGER:实现量子飞跃:室温量子逻辑的有机磁振子学
  • 批准号:
    1836989
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Manipulating polariton entanglement for room-temperature quantum logic
EAGER:实现量子飞跃:操纵室温量子逻辑的极化子纠缠
  • 批准号:
    1838276
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Towards Room Temperature Quantum Logic Using Moire Heterostructure Single Quantum Emitters Coupled to Plasmonic Waveguides
EAGER:实现量子飞跃:使用莫尔异质结构单量子发射器耦合到等离子体波导实现室温量子逻辑
  • 批准号:
    1838378
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Room-temperature Photon Blockade and Quantum Gates Using Quantum Dots in 2D Materials
EAGER:实现量子飞跃:在 2D 材料中使用量子点的室温光子封锁和量子门
  • 批准号:
    1838380
  • 财政年份:
    2018
  • 资助金额:
    $ 2497.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了