Spin torque devices driven by tailored spin currents

由定制自旋电流驱动的自旋扭矩装置

基本信息

  • 批准号:
    1810541
  • 负责人:
  • 金额:
    $ 34.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Spin electronics has the potential to revolutionize information technologies by providing energy-efficient magnetic devices for storage, processing, and transmission of information. Many of the existing and proposed devices rely on spin torques which are used to control magnetization dynamics and to manipulate magnetic states of nanoscale devices. The prominent examples are magnetic switching and spin torque oscillators. Spin torque oscillators can be used to create local microwave fields assisting the magnetic writing in hard drives. Furthermore, they can transmit information by emitting spin waves into a magnonic waveguide. Such oscillators exhibit a rich palette of nonlinear phenomena that makes them particularly attractive device candidates within the emerging paradigm of neuromorphic computing. The central prerequisite for the design and realization of spin torque devices is the energy-efficient generation of customized spin torques. Spin torques are exerted by spin currents injected into a magnetic device element. Currently, the major bottlenecks for the development of next generation devices are limitations to the polarization direction of pure spin currents and ohmic heating. The proposed research addresses these challenges, aiming to advance existing and to spark novel device concepts. The objective is to overcome the polarization constraints for pure spin currents and to utilize thermal effects for the generation of customizable spin torques. In the course of this research, graduate and undergraduate students will be trained in state-of-the-art experimental skills of device fabrications, material characterization, and magnetic spectroscopy. The proposal contains an outreach component that targets local school teachers who will receive training in electromagnetism and spintronics concepts. Moreover, an outreach program for a local science and arts event will be developed and presented to the students.The proposed approach utilizes spin-orbit torques in metallic ferromagnets (such as anomalous Hall effect and planar Hall effect) and furthermore investigates thermal spin injection via spin Seebeck effect in coupled two-ferromagnet systems. It is planned to fabricate nanowire devices from bilayers consisting of an insulating ferrimagnet and a metallic ferromagnet, where the latter serves as spin injector. Spin torque ferromagnetic resonance measurements will be carried out to assess spin dynamics in these coupled spin systems and to investigate the spin torques due to the spin-orbit and thermal effects. Furthermore, spin injectors with perpendicular and oblique spin polarizations will be engineered and implemented in novel spin-electronic applications, such as perpendicular spin torque oscillators, spin superfluid conveyors, and antiferromagnetic planar switches. The research will result in engineering concepts for spin-charge and spin-heat transducers and stimulate the development of novel magneto-electronic devices. It will, furthermore, provide incentive experimental data for further development of fundamental concepts in the areas of spin-orbitronics and spin-caloritronics. The devices developed in the course of the proposed research will serve the proof-of-concept and prototypical purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自旋电子学有可能通过提供用于信息存储、处理和传输的节能磁性设备来彻底改变信息技术。许多现有的和提出的设备依赖于自旋扭矩,用于控制磁化动力学和操纵纳米级设备的磁状态。突出的例子是磁开关和自旋力矩振荡器。自旋力矩振荡器可用于产生局部微波场,辅助硬盘驱动器中的磁性写入。此外,它们可以通过向磁振子波导发射自旋波来传输信息。这样的振荡器表现出丰富的调色板的非线性现象,使他们特别有吸引力的设备候选人内的新兴范式的神经形态计算。设计和实现自旋力矩装置的中心先决条件是高效地产生定制的自旋力矩。自旋力矩由注入到磁性器件元件中的自旋电流施加。目前,下一代器件发展的主要瓶颈是纯自旋电流的极化方向和欧姆加热的限制。拟议的研究解决了这些挑战,旨在推进现有的和火花新的设备概念。我们的目标是克服纯自旋电流的极化约束,并利用热效应产生可定制的自旋力矩。 在这项研究的过程中,研究生和本科生将在设备制造,材料表征和磁光谱的最先进的实验技能进行培训。该提案包括一个外展部分,针对将接受电磁学和自旋电子学概念培训的当地学校教师。此外,我们亦会为本地的科学及艺术活动发展一个外展计划,并向学生介绍。我们所提出的方法利用了金属铁磁体中的自旋-轨道力矩(例如反常霍尔效应及平面霍尔效应),并进一步研究了耦合双铁磁体系统中通过自旋Seebeck效应实现的热自旋注入。计划从由绝缘亚铁磁体和金属铁磁体组成的双层制造纳米线器件,其中后者用作自旋注入器。将进行自旋力矩铁磁共振测量,以评估这些耦合自旋系统中的自旋动力学,并研究由于自旋轨道和热效应引起的自旋力矩。此外,具有垂直和倾斜自旋极化的自旋注入器将被设计和实现在新的自旋电子应用中,例如垂直自旋力矩振荡器、自旋超流输送机和反铁磁平面开关。这项研究将产生自旋电荷和自旋热传感器的工程概念,并刺激新型磁电子器件的发展。此外,它还将为进一步发展自旋轨道电子学和自旋热电子学领域的基本概念提供激励性实验数据。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlling Selection Rules for Magnon Scattering in Nanomagnets by Spatial Symmetry Breaking
  • DOI:
    10.1103/physrevapplied.19.044087
  • 发表时间:
    2023-04-27
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Etesamirad,Arezoo;Kharlan,Julia;Verba,Roman
  • 通讯作者:
    Verba,Roman
Giant nonlinear damping in nanoscale ferromagnets
  • DOI:
    10.1126/sciadv.aav6943
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Barsukov, I.;Lee, H. K.;Krivorotov, I. N.
  • 通讯作者:
    Krivorotov, I. N.
Controlling Magnon Interaction by a Nanoscale Switch
通过纳米级开关控制磁振子相互作用
  • DOI:
    10.1021/acsami.1c01562
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Etesamirad, Arezoo;Rodriguez, Rodolfo;Bocanegra, Joshua;Verba, Roman;Katine, Jordan;Krivorotov, Ilya N.;Tyberkevych, Vasyl;Ivanov, Boris;Barsukov, Igor
  • 通讯作者:
    Barsukov, Igor
Exploring Magnetic Resonance with a Compass
用指南针探索磁共振
  • DOI:
    10.1119/1.5135797
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cookson, Esther;Nelson, David;Anderson, Michael;McKinney, Daniel L.;Barsukov, Igor
  • 通讯作者:
    Barsukov, Igor
Self-stabilizing exchange-mediated spin transport
  • DOI:
    10.1103/physrevb.103.144412
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    T. Schneider;D. Hill;A. Kákay;K. Lenz;J. Lindner;J. Fassbender;P. Upadhyaya;Yuxiang Liu;Kang L. Wang;Y. Tserkovnyak;I. Krivorotov;I. Barsukov
  • 通讯作者:
    T. Schneider;D. Hill;A. Kákay;K. Lenz;J. Lindner;J. Fassbender;P. Upadhyaya;Yuxiang Liu;Kang L. Wang;Y. Tserkovnyak;I. Krivorotov;I. Barsukov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Barsukov其他文献

1H, 15N and 13C NMR resonance assignment, secondary structure and global fold of the FMN-binding domain of human cytochrome P450
  • DOI:
    10.1023/a:1018313830207
  • 发表时间:
    1997-07-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Igor Barsukov;Sandeep Modi;Lu-Yun Lian;Kong Hung Sze;Mark J.I. Paine;C. Roland Wolf;Gordon C.K. Roberts
  • 通讯作者:
    Gordon C.K. Roberts
Raman on the palm: handheld Raman spectroscopy for enhanced traceability of palm oil
手掌上的拉曼:用于增强棕榈油可追溯性的手持式拉曼光谱
  • DOI:
    10.1038/s41538-025-00462-3
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    7.800
  • 作者:
    Joe Stradling;Cassio Lima;Rudi Grosman;Igor Barsukov;Yun Xu;Ernest Teye;Chris Elliott;Howbeer Muhamadali;Royston Goodacre
  • 通讯作者:
    Royston Goodacre

Igor Barsukov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Igor Barsukov', 18)}}的其他基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
Development of a biotechnology platform for enzymatic sulfation of industrial products based on polysaccharide sulfotransferases
基于多糖磺基转移酶的工业产品酶促硫酸化生物技术平台的开发
  • 批准号:
    BB/V003372/1
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
SBIR Phase I: New and Improved Zinc-Air Battery System and Devices
SBIR第一阶段:新型和改进的锌空气电池系统和设备
  • 批准号:
    1248895
  • 财政年份:
    2013
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Structural studies on the talin head domain - a key regulator of cell-matrix interactions
talin头域的结构研究——细胞-基质相互作用的关键调节因子
  • 批准号:
    BB/G003637/1
  • 财政年份:
    2009
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
Myosin II dynamics and the influence of S100A4
肌球蛋白 II 动力学和 S100A4 的影响
  • 批准号:
    BB/F007213/1
  • 财政年份:
    2008
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
Role of the paxillin/poly(A)-binding protein 1 complex in mRNA trafficking during cell migration
桩蛋白/多聚腺苷酸结合蛋白 1 复合物在细胞迁移过程中 mRNA 运输中的作用
  • 批准号:
    BB/C003527/2
  • 财政年份:
    2006
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant

相似国自然基金

铁磁体/拓扑绝缘体异质结磁性邻近效应及Spin Orbit Torque研究
  • 批准号:
    11574129
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
金属纳米结构中对称性与量子输运性质
  • 批准号:
    10904061
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
巨磁电阻器件中极化电流激发的自旋波效应研究
  • 批准号:
    10604016
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
  • 批准号:
    EP/X036715/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
Metal Halide Perovskite Spin-Orbit Torque Devices
金属卤化物钙钛矿自旋轨道扭矩装置
  • 批准号:
    DP220103783
  • 财政年份:
    2022
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Projects
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152528
  • 财政年份:
    2022
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Non-volatile magnetic memory devices based on field-free spin-orbit torque switching of perpendicularly polarized magnets.
基于垂直极化磁体的无场自旋轨道扭矩切换的非易失性磁存储器件。
  • 批准号:
    2208057
  • 财政年份:
    2022
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Energy efficient spin-torque devices
节能自旋扭矩装置
  • 批准号:
    2230124
  • 财政年份:
    2022
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152601
  • 财政年份:
    2022
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Novel designs of Spin Torque Transfer Magnetic Random Access Memory (STT-MRAM) devices
自旋转矩传递磁性随机存取存储器(STT-MRAM)器件的新颖设计
  • 批准号:
    561528-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Idea to Innovation
Development of spin-wave resonators by multiple local spin-orbit torque excitations and their application to high-frequency devices
多重局部自旋轨道扭矩激励自旋波谐振器的研制及其在高频器件中的应用
  • 批准号:
    21K04870
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deciphering spin-orbit torque in magnetic single layers: Towards spin-torque devices with extended scalability
解读磁性单层中的自旋轨道扭矩:迈向具有扩展可扩展性的自旋扭矩设备
  • 批准号:
    20K15156
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Manipulation of spin-orbit torque in a spin-orbit ferromagnet single layer for future spin devices
用于未来自旋器件的自旋轨道铁磁体单层中的自旋轨道扭矩的操纵
  • 批准号:
    20F20366
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了