Improving Graph Literacy and Numeracy
提高图形素养和计算能力
基本信息
- 批准号:1810498
- 负责人:
- 金额:$ 13.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award was provided as part of NSF's Social, Behavioral and Economic Sciences Postdoctoral Research Fellowships (SPRF) program and is supported by SBE's Perception, Action and Cognition program. The goal of the SPRF program is to prepare promising, early career doctoral-level scientists for scientific careers in academia, industry or private sector, and government. SPRF awards involve two years of training under the sponsorship of established scientists and encourage Postdoctoral Fellows to perform independent research. NSF seeks to promote the participation of scientists from all segments of the scientific community, including those from underrepresented groups, in its research programs and activities; the postdoctoral period is considered to be an important level of professional development in attaining this goal. Each Postdoctoral Fellow must address important scientific questions that advance their respective disciplinary fields. Under the sponsorship of Dr. Steven Franconeri at Northwestern University, this postdoctoral fellowship award supports an early career scientist investigating ways to help people understand visualizations of data. Accurately interpreting visualizations of data is vital for success in science, technology, engineering, and math (STEM) fields. Scientists depend on graphics to communicate and develop ideas about data. Further, people use visualizations of data to make large-scale policy decisions, such as where to allocate resources before a hurricane and more personal decisions, such as which medical treatment to undergo. Given the widespread use of visualizations and their global impact, it is important that everyone can use visualizations of data effectively. Unfortunately, not all people can understand visualizations of data easily. One-third of the US population exhibits low graph literacy and numeracy, or the underdeveloped ability to work with graphically presented information and numbers. Graph literacy and numeracy are two key factors that contribute to visualization literacy. This work removes barriers for disadvantaged students in STEM by identifying the causes of low visualization literacy, and developing free and equitable resources to improve visualization literacy. This project focuses on determining the nature of the cognitive factors that produce difficulty in reasoning with visualizations. In a recent review paper, Padilla and colleagues proposed a cognitive model for how people make decisions with visualizations (Padilla, Creem-Regehr, Hegarty, & Stefanucci, 2018). Building on this model, the current project seeks to identify cognitive components that lead to a misunderstanding of visualizations for people with low visualization literacy. These studies contribute new knowledge about how diverse groups of people understand and use data visualizations, in addition to providing practical recommendations for how to help people make their best possible decisions with visualizations of data. The results of this work strengthen our basic understanding of visualization cognition for people that have difficulty understanding STEM graphics. This project also provides educators with empirically tested methods for helping students with low visualization literacy use and understand visualizations of data, thusly removing a barrier to success in STEM for these disadvantaged populations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是作为NSF的社会,行为和经济科学博士后研究奖学金(SPRF)计划的一部分提供的,并得到SBE的感知,行动和认知计划的支持。SPRF计划的目标是为学术界,工业或私营部门和政府的科学事业准备有前途的早期职业博士级科学家。SPRF的奖励包括在知名科学家的赞助下进行两年的培训,并鼓励博士后研究员进行独立研究。NSF致力于促进来自科学界各部门的科学家,包括来自代表性不足的群体的科学家参与其研究计划和活动;博士后期间被认为是实现这一目标的专业发展的重要水平。每个博士后研究员必须解决推进各自学科领域的重要科学问题。在西北大学Steven Franconeri博士的赞助下,这个博士后奖学金支持一位早期职业科学家研究帮助人们理解数据可视化的方法。准确解释数据的可视化对于科学、技术、工程和数学(STEM)领域的成功至关重要。科学家依靠图形来交流和发展关于数据的想法。此外,人们使用数据的可视化来做出大规模的政策决策,例如在飓风发生之前将资源分配到哪里,以及更多的个人决策,例如接受何种医疗。鉴于可视化的广泛使用及其全球影响,每个人都能有效地使用数据可视化是很重要的。不幸的是,并非所有人都能轻松理解数据的可视化。三分之一的美国人口表现出较低的图形读写能力和算术能力,或者是不发达的能力与图形呈现的信息和数字。图形素养和计算能力是有助于可视化素养的两个关键因素。这项工作通过确定低可视化素养的原因,并开发免费和公平的资源来提高可视化素养,为STEM中的弱势学生消除障碍。这个项目的重点是确定认知因素的性质,产生困难的推理与可视化。在最近的一篇综述论文中,帕迪利亚及其同事提出了一个认知模型,用于研究人们如何通过可视化做出决策(帕迪利亚,Creem-Regehr,Hegarty,Stefanucci,2018)。 在此模型的基础上,目前的项目旨在确定认知组件,导致低可视化素养的人对可视化的误解。这些研究提供了关于不同人群如何理解和使用数据可视化的新知识,此外还为如何帮助人们通过数据可视化做出最佳决策提供了实用建议。这项工作的结果加强了我们对难以理解STEM图形的人的可视化认知的基本理解。该项目还为教育工作者提供了经验验证的方法,帮助视觉化素养低的学生使用和理解数据的视觉化,从而消除了这些弱势群体在STEM中取得成功的障碍。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Case for Cognitive Models in Visualization Research
可视化研究中认知模型的案例
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Padilla, Lace
- 通讯作者:Padilla, Lace
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lace Padilla其他文献
Trust Junk and Evil Knobs: Calibrating Trust in AI Visualization
信任垃圾和邪恶旋钮:校准人工智能可视化中的信任
- DOI:
10.1109/pacificvis60374.2024.00012 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emily Wall;Laura E. Matzen;Mennatallah El;Peta Masters;Helia Hosseinpour;A. Endert;Rita Borgo;Polo Chau;Adam Perer;Harald Schupp;Hendrik Strobelt;Lace Padilla - 通讯作者:
Lace Padilla
Evaluating convergence between two data visualization literacy assessments
- DOI:
10.1186/s41235-025-00622-9 - 发表时间:
2025-04-05 - 期刊:
- 影响因子:3.100
- 作者:
Erik Brockbank;Arnav Verma;Hannah Lloyd;Holly Huey;Lace Padilla;Judith E. Fan - 通讯作者:
Judith E. Fan
Lace Padilla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lace Padilla', 18)}}的其他基金
CAREER: Resolving Uncertainty Visualization Reasoning Errors with Mental Model Design and Training
职业:通过心智模型设计和训练解决不确定性可视化推理错误
- 批准号:
2238175 - 财政年份:2023
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
EAGER: SAI: Facilitating Restoration of Natural Infrastructure Using Uncertainty Communication
EAGER:SAI:利用不确定性通信促进自然基础设施的恢复
- 批准号:
2122174 - 财政年份:2021
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
相似国自然基金
基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
平面三角剖分flip graph的强凸性研究
- 批准号:12301432
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于graph的多对比度磁共振图像重建方法
- 批准号:61901188
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
- 批准号:61771009
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Graph和ISA的红外目标分割与识别方法研究
- 批准号:61101246
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中国Web Graph的挖掘与应用研究
- 批准号:60473122
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Next-Generation Distributed Graph Engine for Big Graphs
适用于大图的下一代分布式图引擎
- 批准号:
DP240101322 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Discovery Projects
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Research Grant
Computing over Compressed Graph-Structured Data
压缩图结构数据的计算
- 批准号:
EP/X039447/1 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
- 批准号:
24K20834 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Fast Scalable Graph Algorithms
职业:快速可扩展图算法
- 批准号:
2340048 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
REU Site: Graph Learning and Network Analysis: from Foundations to Applications (GraLNA)
REU 网站:图学习和网络分析:从基础到应用 (GraLNA)
- 批准号:
2349369 - 财政年份:2024
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant














{{item.name}}会员




