Nanostructure Engineering Is Another Approach Toward Membrane-Active Antimicrobials with Desirable Activity and Selectivity

纳米结构工程是开发具有理想活性和选择性的膜活性抗菌剂的另一种方法

基本信息

  • 批准号:
    1810767
  • 负责人:
  • 金额:
    $ 45.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Abstract # DMR ? 1810767Non-Technical Summary Antibiotic-resistant superbugs that elude one or more traditional antibiotics are causing a public health crisis. Membrane-active antimicrobials represent a new family of promising antibiotic materials to address this crisis. They include a wide variety of small molecules, polymers, polypeptides, self-assembled structures, and organic-inorganic hybrid materials that kill bacteria by disrupting bacterial membranes. Since this mode of damage does not target specific biosynthetic pathways, the possibility of inducing bacterial resistance is greatly reduced. However, most current designs of membrane-active antimicrobials are not ready for applications yet because their hydrophobicity believed to be indispensable for breaking bacterial membranes also damages mammalian cells, which gives rise to their unacceptable toxicity. A critical but poorly understood question is how to design hydrophilic membrane-active antimicrobials that kill bacteria specifically without having to breach the hydrophobic cell membrane in general. Recent discovery of various membrane-active antibiotic nanomaterials suggests that nanostructure engineering could be another approach to develop membrane-active antimicrobials. The objective of this award is to adapt materials engineering, chemistry, and biological tools for the development of hydrophilic nanostructured antibiotic materials, and to elucidate the role of nanostructures on bacterial membrane remodeling. The successful outcomes of this award will pave the way for a potential paradigm shift to develop novel antibiotic materials with desirable activity, selectivity, and biocompatibility to fight bacterial resistance. Integrated with the research activities is a multi-tiered antimicrobial education program that will bring broad societal awareness on antibiotic resistance, and train next generation of scientists on the development of new antibiotic materials. Technical SummaryThe overall objective of this award is to adapt materials engineering, chemistry, and biological tools for the development of nanostructured membrane-active antibiotic materials (i.e., "nanoantibiotics"), and to elucidate the role of nanostructures on bacterial membrane remodeling. The central hypothesis is that hydrophilic linear-chain polymers that do not breach the hydrophobic membrane interior but have poor antimicrobial activity can be transformed into potent antibiotic materials with high selectivity when assembled into nanostructures. This award will identify the role of multivalent interactions that drive this transformation, elucidate how nanostructure itself helps regulate antimicrobial activity and selectivity, and determine the feasibility of triple selectivity in the design of nanoantibiotics that will disintegrate and become inactive in response to environmental stimuli. This award will help open a door to transform diverse hydrophilic polymers that have excellent biocompatibility but weak antibiotic activity into potent nanostructured antibiotic materials. It will also reveal how to use physical dimensions of nanostructured membrane-active antibiotic materials as a simple tool to tune their activity and selectivity, potentially recruiting the latest development in both the bottom-up and top-down nanostructure engineering into antibiotic designs. Finally, it will examine a prototypical design of nanoantibiotics with dismantling "switch", shedding light on how to turn off antimicrobial activity "on demand" by disassembling antibiotic nanostructures after their service, hence reducing the prolonged presence of residue antibiotics in natural habitats that not only helps bacteria develop resistance, but also adversely impacts the ecosystems. This award will provide abundant training opportunities for postdoc, graduate and undergraduate students, and K12 participants in the interdisciplinary area of biology, chemistry, and materials science and engineering, support educational development on membrane-active antibiotic materials, and promote broad societal awareness on antibiotic resistance and antibiotic materials to diverse participants at all levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要# DMR?1810767非技术性总结对一种或多种传统抗生素具有抗药性的超级细菌正在引发公共卫生危机。膜活性抗菌剂代表了一个新的家庭有前途的抗生素材料,以解决这一危机。它们包括各种各样的小分子、聚合物、多肽、自组装结构和通过破坏细菌膜来杀死细菌的有机-无机杂化材料。由于这种损伤模式不针对特定的生物合成途径,因此诱导细菌耐药性的可能性大大降低。然而,目前大多数膜活性抗菌剂的设计还没有准备好应用,因为它们的疏水性被认为是破坏细菌膜不可或缺的,也会损害哺乳动物细胞,这导致它们不可接受的毒性。一个关键但知之甚少的问题是如何设计亲水性膜活性抗菌剂,专门杀死细菌,而不必破坏疏水性细胞膜。最近发现的各种膜活性抗生素纳米材料表明,纳米结构工程可能是开发膜活性抗菌剂的另一种方法。该奖项的目的是调整材料工程,化学和生物工具,用于开发亲水性纳米结构抗生素材料,并阐明纳米结构对细菌膜重塑的作用。该奖项的成功结果将为潜在的范式转变铺平道路,以开发具有理想活性,选择性和生物相容性的新型抗生素材料,以对抗细菌耐药性。与研究活动相结合的是一个多层次的抗菌教育计划,将带来广泛的社会对抗生素耐药性的认识,并培训下一代科学家开发新的抗生素材料。该奖项的总体目标是调整材料工程,化学和生物工具,用于开发纳米结构膜活性抗生素材料(即,“纳米抗生素”),并阐明纳米结构对细菌膜重塑的作用。中心假设是,亲水性线性链聚合物,不破坏疏水膜内部,但具有较差的抗菌活性,可以转化为有效的抗生素材料,具有高选择性组装成纳米结构。该奖项将确定推动这种转变的多价相互作用的作用,阐明纳米结构本身如何帮助调节抗微生物活性和选择性,并确定在纳米抗生素设计中三重选择性的可行性,这些纳米抗生素将分解并对环境刺激产生反应。该奖项将有助于打开一扇大门,将具有良好生物相容性但抗菌活性较弱的各种亲水性聚合物转化为有效的纳米结构抗菌材料。它还将揭示如何使用纳米结构膜活性抗生素材料的物理尺寸作为一种简单的工具来调整其活性和选择性,可能会将自下而上和自上而下的纳米结构工程的最新发展纳入抗生素设计中。最后,它将研究具有拆卸“开关”的纳米抗生素的原型设计,揭示如何通过在服务后拆卸抗生素纳米结构来“按需”关闭抗菌活性,从而减少残留抗生素在自然栖息地中的长期存在,这不仅有助于细菌产生耐药性,而且对生态系统产生不利影响。该奖项将为博士后,研究生和本科生以及生物学,化学和材料科学与工程跨学科领域的K12参与者提供丰富的培训机会,支持膜活性抗生素材料的教育发展,并促进社会对抗生素耐药性和抗生素材料的广泛认识,以各级不同的参与者。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extraction and reconstitution of membrane proteins into lipid nanodiscs encased by zwitterionic styrene-maleic amide copolymers
  • DOI:
    10.1038/s41598-020-66852-7
  • 发表时间:
    2020-06-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Fiori, Mariana C.;Zheng, Wan;Liang, Hongjun
  • 通讯作者:
    Liang, Hongjun
Synthesis of Lysine Mimicking Membrane Active Antimicrobial Polymers
仿赖氨酸膜活性抗菌聚合物的合成
Improved Solubility of Membrane Proteins with zSMA Polymers
使用 zSMA 聚合物提高膜蛋白的溶解度
  • DOI:
    10.1016/j.bpj.2019.11.1418
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Fiori, Mariana C.;Jiang, Yunjiang;Zheng, Wan;Altenberg, Guillermo A.;Liang, Hongjun
  • 通讯作者:
    Liang, Hongjun
SMALPs Are Not Simply Nanodiscs: The Polymer-to-Lipid Ratios of Fractionated SMALPs Underline Their Heterogeneous Nature
  • DOI:
    10.1021/acs.biomac.3c00034
  • 发表时间:
    2023-03-22
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Kamilar,Elizabeth;Bariwal,Jitender;Liang,Hongjun
  • 通讯作者:
    Liang,Hongjun
Two New Types of Polymer Nanodiscs for Membrane Protein Studies
用于膜蛋白研究的两种新型聚合物纳米圆盘
  • DOI:
    10.1016/j.bpj.2018.11.2016
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Fiori, Mariana C.;Jiang, Yunjiang;Zheng, Wan;Anzaldua, Miguel;Borgnia, Mario J.;Altenberg, Guillermo A.;Liang, Hongjun
  • 通讯作者:
    Liang, Hongjun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongjun Liang其他文献

Axial behaviour of CFST stub columns strengthened with steel tube and sandwiched concrete jackets
钢管夹层混凝土导管架加固钢管混凝土短柱的轴向性能
  • DOI:
    10.1016/j.tws.2020.106942
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Hongjun Liang;Weijie Li;Yue Huang;Yiyan Lu
  • 通讯作者:
    Yiyan Lu
A Chemical-genetics and Nanoparticle Enabled Approach for in vivo Protein Kinase Analysis
用于体内蛋白激酶分析的化学遗传学和纳米颗粒方法
  • DOI:
    10.1101/2020.05.13.094573
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fengqian Chen;Qi Liu;Terrell Hilliard;Ting;Hongjun Liang;Weimin Gao;Leaf Huang;Degeng Wang
  • 通讯作者:
    Degeng Wang
Analytical solution for predicting the interaction stress of axially loaded concrete-filled double-tube columns
  • DOI:
    10.1016/j.tws.2022.109579
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Weijie Li;Hongjun Liang;Shan Li;Yiyan Lu;Yue Huang
  • 通讯作者:
    Yue Huang
Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression
钢管混凝土加固锈蚀钢筋混凝土柱轴压强度预测
  • DOI:
    10.12989/scs.2020.37.4.481
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Hongjun Liang;Yanju Jiang;Yiyan Lu;Jiyue Hu
  • 通讯作者:
    Jiyue Hu
A torsional-axial vibration analysis of drill string endowed with kinematic coupling and stochastic approach
  • DOI:
    https://doi.org/10.1016/j.petrol.2020.108157
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Jingkai Chen;Hualin Liao;Yanting Zhang;Hongjun Liang;Chuanfu Liu;Dong Qi
  • 通讯作者:
    Dong Qi

Hongjun Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongjun Liang', 18)}}的其他基金

I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
  • 批准号:
    2306943
  • 财政年份:
    2023
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
Biodegradable Polymer Nanodiscs as Novel Lipoprotein-Mimicking Nanocarriers for Anticancer Drug Delivery with High Stability and Long Circulation Time
可生物降解的聚合物纳米盘作为新型脂蛋白模拟纳米载体,用于高稳定性和长循环时间的抗癌药物输送
  • 批准号:
    2213969
  • 财政年份:
    2022
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
  • 批准号:
    1623240
  • 财政年份:
    2015
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
  • 批准号:
    1623241
  • 财政年份:
    2015
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
  • 批准号:
    1410825
  • 财政年份:
    2014
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
  • 批准号:
    1160291
  • 财政年份:
    2012
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

2024 - 2025 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator Workshops
2024 - 2025 美国国家科学基金会 (NSF) 计算机与信息科学与工程 (CISE) 本科生研究经验 (REU) 首席研究员研讨会
  • 批准号:
    2407231
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM/IEEE International Conference on Software Engineering
旅行:2024 年 ACM/IEEE 软件工程国际会议 NSF 学生旅行补助金
  • 批准号:
    2413092
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
Conference: Polymeric Materials: Science and Engineering Division Centennial Celebration at the Spring 2024 American Chemical Society Meeting
会议:高分子材料:美国化学会 2024 年春季会议科学与工程部百年庆典
  • 批准号:
    2415569
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
REU Site: University of Colorado, Engineering Smart Biomaterials
REU 站点:科罗拉多大学,工程智能生物材料
  • 批准号:
    2348856
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
  • 批准号:
    2349368
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
Biology Meets Engineering: Expanding Transdisciplinary STEM Education
生物学与工程学的结合:扩展跨学科 STEM 教育
  • 批准号:
    2342578
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
  • 批准号:
    2339619
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
  • 批准号:
    2339753
  • 财政年份:
    2024
  • 资助金额:
    $ 45.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了