Biodegradable Polymer Nanodiscs as Novel Lipoprotein-Mimicking Nanocarriers for Anticancer Drug Delivery with High Stability and Long Circulation Time
可生物降解的聚合物纳米盘作为新型脂蛋白模拟纳米载体,用于高稳定性和长循环时间的抗癌药物输送
基本信息
- 批准号:2213969
- 负责人:
- 金额:$ 47.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical descriptionA disc-shaped flying saucer that presumably navigates to Earth from a far away galaxy is awe-inspiring. Navigating through the human blood stream is no small feat either. To efficiently deliver drugs through blood circulation to reach deep-seated disease sites is one of the most critical challenges in treating cancer, the second largest cause of fatality in US and globally. Although significant strides have been made on developing various nanocarriers to help with that, efficacious patient responses remain modest compared to conventional drug formulations. The somewhat less stellar performance of nanocarriers is attributed to their poor transport inside the body. To address the deficiency, this project aims to develop a new family of nanocarrier called polymer nanodiscs that mimic the high-density lipoprotein nanoparticles (HDL) in human blood. The nascent form of HDL is well-known lipid nanodisc that mediates highly efficient cholesterol transport from peripheral cells back to the liver. Intriguingly, disc-shaped particles have been shown to outperform spherical ones with prolonged blood circulation half-lives and higher cellular internalization rates. Most nanocarriers under development are spherical in shape because it is technically challenging to prepare disc-shaped nanoparticles through chemical synthesis. This project will elucidate the design principles of biocompatible block copolymers that self-assemble with membrane-scaffold proteins (or membrane-scaffold polymers) into well-defined polymer nanodiscs to carry tumor-specific targeting and drug release moieties. If successful, it may bring forth another advance in harnessing nanotechnology for cancer diagnostics and treatment. The design concepts may have broad impact in other related fields, such as nanodisc-based immunotherapy, nanodisc-based structural and functional studies of membrane proteins, and the development of biomimetic 2-dimensional materials for applications in human health, clean energy, and environment. Through the integrated education and outreach activities, this project will help motivate graduate, undergraduate, and K-12 students to pursue career paths in the interdisciplinary area of materials science, nanoengineering, and biomedical science.Technical descriptionNanotechnology has been widely anticipated to benefit the diagnostic and treatment of cancers. Despite the significant strides in nanocarrier development, efficacious patient responses remain modest compared to conventional drug formulations. Clearly, a gap of knowledge exists on nanocarrier design beyond simply controlling their sizes. The lipoprotein-mimicking nanodiscs represent a novel family of 2-dimensional materials with great potential for drug delivery, as mounting evidence has suggested that disc-shaped particles outperform spherical ones with prolonged blood circulation half-lives and higher cellular uptake. Adapting lipid nanodiscs (LNDs) for anticancer drug delivery has attracted lots of attention, but as drug carriers LNDs suffer from low stability, short shelf life, limited drug loading capacity, and difficulty for chemical modifications. The objective of this project is to elucidate the self-assembly principle between amphiphilic block and random copolymers toward the formation of novel lipoprotein-mimicking polymer nanodiscs (PNDs) with excellent biocompatibility and biodegradability, long-term stability, high drug loading capacity, and facile modification chemistry for anticancer drug delivery. Synthetic strategies to prepare well-defined amphiphilic block copolymers that carry tumor-specific targeting and drug release moieties will be developed, and the self-assembly behavior between model block copolymers and membrane-scaffold proteins (MSPs) into PNDs will be elucidated. De novo designed synthetic membrane-scaffold polymers (MSPols) that potentially overcome the limitations of biologically-derived MSPs will also be explored to develop fully synthetic PNDs for anticancer drug delivery. PNDs are expected to break the limitations of LNDs without compromising their highly sought-after size and shape that favor prolonged circulation half-lives and enhanced cellular uptake, hence potentially bringing forth another advance in harnessing nanotechnology for cancer treatment. Besides anticancer drug delivery, this study will also fill a critical gap of knowledge on the rational design of synthetic biodegradable MSPols that rival MSPs in encasing nanodiscs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一个圆盘状的飞碟,大概是从一个遥远的星系导航到地球,这是令人敬畏的。在人体血液中导航也不是一件容易的事。通过血液循环有效地将药物输送到深层疾病部位是治疗癌症的最关键挑战之一,癌症是美国和全球第二大致死原因。尽管在开发各种纳米载体方面取得了重大进展,但与传统药物制剂相比,有效的患者反应仍然温和。纳米载体的性能稍逊一筹,这是因为它们在体内的运输能力很差。为了解决这一缺陷,该项目旨在开发一种新的纳米载体家族,称为聚合物纳米盘,模拟人体血液中的高密度脂蛋白纳米颗粒(HDL)。HDL的新生形式是众所周知的脂质纳米盘,其介导胆固醇从外周细胞高效转运回肝脏。有趣的是,圆盘形颗粒已经被证明比球形颗粒更好,具有延长的血液循环半衰期和更高的细胞内化率。大多数正在开发的纳米载体都是球形的,因为通过化学合成制备盘形纳米颗粒在技术上具有挑战性。该项目将阐明生物相容性嵌段共聚物的设计原理,该嵌段共聚物与膜支架蛋白(或膜支架聚合物)自组装成定义明确的聚合物纳米盘,以携带肿瘤特异性靶向和药物释放部分。如果成功的话,它可能会带来利用纳米技术进行癌症诊断和治疗的另一个进步。这些设计概念可能在其他相关领域产生广泛的影响,例如基于纳米盘的免疫治疗,基于纳米盘的膜蛋白的结构和功能研究,以及仿生二维材料在人类健康,清洁能源和环境中的应用。通过综合教育和外展活动,该项目将有助于激励研究生,本科生和K-12学生在材料科学,纳米工程和生物医学科学的跨学科领域追求职业道路。技术支持纳米技术已被广泛预期有利于诊断和治疗癌症。尽管在纳米载体开发方面取得了重大进展,但与常规药物制剂相比,有效的患者反应仍然适度。显然,除了简单地控制它们的尺寸之外,纳米载体设计存在知识空白。模拟脂蛋白的纳米盘代表了一种新型二维材料家族,具有巨大的药物输送潜力,因为越来越多的证据表明,盘状颗粒优于球形颗粒,具有延长的血液循环半衰期和更高的细胞吸收。将脂质纳米盘(LND)用于抗癌药物递送已经引起了很多关注,但是LND作为药物载体具有稳定性低、保质期短、载药量有限以及化学修饰困难的缺点。本项目的目的是阐明两亲性嵌段和无规共聚物之间的自组装原理,以形成新型的脂蛋白模拟聚合物纳米盘(PND),该纳米盘具有优异的生物相容性和生物降解性,长期稳定性,高载药能力,以及用于抗癌药物递送的简易修饰化学。合成策略,以制备定义明确的两亲性嵌段共聚物,携带肿瘤特异性靶向和药物释放部分将被开发,模型嵌段共聚物和膜支架蛋白(MSP)到PND之间的自组装行为将被阐明。从头设计的合成膜支架聚合物(MSPols),有可能克服生物衍生MSP的局限性,也将探索开发用于抗癌药物递送的全合成PND。PND有望打破LND的局限性,而不会影响其备受追捧的尺寸和形状,有利于延长循环半衰期和增强细胞摄取,因此可能会在利用纳米技术治疗癌症方面带来另一个进步。除了抗癌药物输送,这项研究还将填补一个关键的知识空白的合理设计的合成可生物降解的MSPols的竞争对手MSP在封装nanodisces.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SMALPs Are Not Simply Nanodiscs: The Polymer-to-Lipid Ratios of Fractionated SMALPs Underline Their Heterogeneous Nature
- DOI:10.1021/acs.biomac.3c00034
- 发表时间:2023-03-22
- 期刊:
- 影响因子:6.2
- 作者:Kamilar,Elizabeth;Bariwal,Jitender;Liang,Hongjun
- 通讯作者:Liang,Hongjun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongjun Liang其他文献
Axial behaviour of CFST stub columns strengthened with steel tube and sandwiched concrete jackets
钢管夹层混凝土导管架加固钢管混凝土短柱的轴向性能
- DOI:
10.1016/j.tws.2020.106942 - 发表时间:
2020-10 - 期刊:
- 影响因子:6.4
- 作者:
Hongjun Liang;Weijie Li;Yue Huang;Yiyan Lu - 通讯作者:
Yiyan Lu
A Chemical-genetics and Nanoparticle Enabled Approach for in vivo Protein Kinase Analysis
用于体内蛋白激酶分析的化学遗传学和纳米颗粒方法
- DOI:
10.1101/2020.05.13.094573 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Fengqian Chen;Qi Liu;Terrell Hilliard;Ting;Hongjun Liang;Weimin Gao;Leaf Huang;Degeng Wang - 通讯作者:
Degeng Wang
Analytical solution for predicting the interaction stress of axially loaded concrete-filled double-tube columns
- DOI:
10.1016/j.tws.2022.109579 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Weijie Li;Hongjun Liang;Shan Li;Yiyan Lu;Yue Huang - 通讯作者:
Yue Huang
Strength prediction of corrosion reinforced concrete columns strengthened with concrete filled steel tube under axial compression
钢管混凝土加固锈蚀钢筋混凝土柱轴压强度预测
- DOI:
10.12989/scs.2020.37.4.481 - 发表时间:
2020 - 期刊:
- 影响因子:4.6
- 作者:
Hongjun Liang;Yanju Jiang;Yiyan Lu;Jiyue Hu - 通讯作者:
Jiyue Hu
A torsional-axial vibration analysis of drill string endowed with kinematic coupling and stochastic approach
- DOI:
https://doi.org/10.1016/j.petrol.2020.108157 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Jingkai Chen;Hualin Liao;Yanting Zhang;Hongjun Liang;Chuanfu Liu;Dong Qi - 通讯作者:
Dong Qi
Hongjun Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongjun Liang', 18)}}的其他基金
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
- 批准号:
2306943 - 财政年份:2023
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
Nanostructure Engineering Is Another Approach Toward Membrane-Active Antimicrobials with Desirable Activity and Selectivity
纳米结构工程是开发具有理想活性和选择性的膜活性抗菌剂的另一种方法
- 批准号:
1810767 - 财政年份:2018
- 资助金额:
$ 47.57万 - 项目类别:
Continuing Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
- 批准号:
1623240 - 财政年份:2015
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
- 批准号:
1623241 - 财政年份:2015
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
Synthesis and Directed Assembly of Bio-Hybrid Materials with Membrane-Protein-Mediated Transport Performance
具有膜蛋白介导的运输性能的生物杂化材料的合成和定向组装
- 批准号:
1410825 - 财政年份:2014
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
Retrievable and Reusable Nanoparticle-Pinched Polymer Brushes Enable Highly Efficient Microalgae Dewatering for Cost-Effective Biofuel Production
可回收和可重复使用的纳米颗粒挤压聚合物刷可实现高效微藻脱水,从而实现具有成本效益的生物燃料生产
- 批准号:
1160291 - 财政年份:2012
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
相似国自然基金
大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
- 批准号:11602270
- 批准年份:2016
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
- 批准号:51302054
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
- 批准号:51105345
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Removal of Perfluorinated Chemicals Using New Fluorinated Polymer Sorbents
使用新型氟化聚合物吸附剂去除全氟化化学品
- 批准号:
LP220100036 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Linkage Projects
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
- 批准号:
2339330 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Continuing Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
- 批准号:
2340208 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Continuing Grant
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
Engineering optically recyclable polymer resins for sustainable additive manufacturing
工程光学可回收聚合物树脂用于可持续增材制造
- 批准号:
2400010 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
- 批准号:
2403712 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
PFI-TT: Commercial scale production of aligned polymer nanofiber materials and yarns
PFI-TT:定向聚合物纳米纤维材料和纱线的商业规模生产
- 批准号:
2345785 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
- 批准号:
2348780 - 财政年份:2024
- 资助金额:
$ 47.57万 - 项目类别:
Standard Grant