Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
基本信息
- 批准号:1810831
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in modern technology have empowered researchers to collect massive data to conduct inference and making predictions. With the abundance of available observations, traditional statistical methods under the parametric assumption that a model can be characterized by a pre-specified number of parameters become inadequate and less attractive. Bayesian nonparametric models are attractive in this context which allow the resolution level of the analysis to be determined in a data-driven manner, and provide automatic characterization of uncertainty. The goal of this project is to develop new theory, methodology and computational tools for Bayesian nonparametric inference via Gaussian process priors. Given the availability of massive data, nonparametric inference offers an attractive framework for flexibly modeling the underlying structure and extracting useful information. For instance, such challenges occur in chemical physics, computational biology, computer vision, engineering, and meteorology. This project aims to lay down a solid methodological, algorithmic, and theoretical foundation for nonparametric inference based on Gaussian processes. In particular, Gaussian process-based approaches tend to be vulnerable to data contamination and have heavy computational costs. To alleviate the high-computational cost of Gaussian process inference procedures, the investigator puts forward two novel computational frameworks which differ at their respective approximating targets as being either the prior or the posterior. To enhance the robustness of Gaussian process inference against data contamination, the investigator proposes a novel class of Bayesian hierarchical models for incorporating this extra measurement error structure, leading to a class of robust Gaussian process inference procedures. The new theoretical development offers valuable insight to experiment-design practitioners into the impact of measurement errors upon prediction and estimation, and provides evidence on the deep connection between computational complexity and statistical learnability. These computational and theoretical frameworks also benefit other disciplines such as applied mathematics, computer science and finance where stochastic processes such as Gaussian processes are routinely used.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代技术的进步使研究人员能够收集大量数据来进行推理和预测。随着观测数据的丰富,传统的统计方法的参数假设下,一个模型可以被预先指定的参数数量的特点变得不够,不那么有吸引力。在这种情况下,贝叶斯非参数模型很有吸引力,它允许以数据驱动的方式确定分析的分辨率水平,并提供不确定性的自动表征。这个项目的目标是发展新的理论,方法和计算工具,通过高斯过程先验的贝叶斯非参数推断。由于大量数据的可用性,非参数推理提供了一个有吸引力的框架,灵活地建模的基础结构和提取有用的信息。例如,这样的挑战发生在化学物理学,计算生物学,计算机视觉,工程和气象学。该项目旨在为基于高斯过程的非参数推断奠定坚实的方法论、算法和理论基础。特别是,基于高斯过程的方法往往容易受到数据污染,并具有沉重的计算成本。为了减轻高斯过程推理程序的高计算成本,研究者提出了两种新的计算框架,它们在各自的近似目标上不同,无论是先验还是后验。为了提高高斯过程推理对数据污染的鲁棒性,研究者提出了一类新的贝叶斯分层模型,将这种额外的测量误差结构,导致一类强大的高斯过程推理程序。新的理论发展为实验设计从业者提供了有价值的洞察力,测量误差对预测和估计的影响,并提供了计算复杂性和统计可学习性之间的深层联系的证据。这些计算和理论框架也有利于其他学科,如应用数学,计算机科学和金融,其中随机过程,如高斯过程是经常使用的。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun Yang其他文献
K3Sr3Li2Al4B6O20F: A Competitive Nonlinear Optical Crystal for Generation of 266 nm Laser
K3Sr3Li2Al4B6O20F:用于产生 266 nm 激光的具有竞争力的非线性光学晶体
- DOI:
10.1039/d2tc02073d - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yun Yang;Shuzhao Huang;Shilie Pan - 通讯作者:
Shilie Pan
Suppressing flow-induced vibration of HGA by an acoustic PZT actuator in hard disk drives
通过硬盘驱动器中的声学 PZT 执行器抑制 HGA 的流动引起的振动
- DOI:
10.1007/s00542-015-2763-5 - 发表时间:
2016-06 - 期刊:
- 影响因子:0
- 作者:
Guoqing Zhang;Yun Yang;Hui Li;Shengnan Shen;Shijing Wu - 通讯作者:
Shijing Wu
Using Silk-derived Magnetic Carbon Nanocomposites as Highly Efficient Nanozymes and Electromagnetic Absorbing Agents
使用丝衍生的磁性碳纳米复合材料作为高效纳米酶和电磁吸收剂
- DOI:
10.1016/j.cclet.2022.108084 - 发表时间:
2022-12 - 期刊:
- 影响因子:9.1
- 作者:
Hao Wang;Xianhui Zhang;Yonghua Tang;Weifeng Rong;Jiachen Zhao;Chaoyu Fan;Zhisen Zhang;Zhijun Sun;Yun Yang;Youhui Lin - 通讯作者:
Youhui Lin
Asymptotic normality of coefficients of some polynomials related to Dowling lattices
一些与Dowling格子有关的多项式系数的渐近正态性
- DOI:
10.2298/fil2009915l - 发表时间:
2020 - 期刊:
- 影响因子:0.8
- 作者:
Lily Li Liu;Yun Yang;Wen Zhang - 通讯作者:
Wen Zhang
Photoluminescence and defect evolution of nano-ZnO thin films at low temperature annealing
纳米ZnO薄膜低温退火的光致发光和缺陷演化
- DOI:
10.1007/s11431-012-5064-6 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yun Yang;Zhenzhen Zhang;Xichang Bao;Renqiang Yang - 通讯作者:
Renqiang Yang
Yun Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun Yang', 18)}}的其他基金
Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
- 批准号:
2210717 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Index in Dynamics: A Tool to Prove the Entropy Conjecture
动力学索引:证明熵猜想的工具
- 批准号:
2000167 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
- 批准号:
1907316 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Fellowship
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
- 批准号:
2330377 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant