Index in Dynamics: A Tool to Prove the Entropy Conjecture

动力学索引:证明熵猜想的工具

基本信息

项目摘要

Many problems such as the motion of mechanical objects, chemical reactions, population growth, and the dynamics of the prices on the market can be modeled by dynamical systems, which are defined by a collection of states and a time-evolution law. There is a classical number associated with a dynamical system, called its entropy, that is a quantitative measure of the complexity of the system. An important problem in dynamical systems that has been unsolved for many decades is called Shub's entropy conjecture. It aims at understanding the lower bound of the entropy of a system using asymptotic information of the system. Due to the nature of this conjecture new multi-disciplinary tools from topology and dynamics are needed to fully solve the conjecture. This project is concerned with developing a tool in dynamical systems, called index theory, in order to advance our general knowledge about the dynamics around fixed points, and with an eye to solving the entropy conjecture. Since this proposal integrates ideas from several branches of mathematics, it will further encourage interactions and collaborations among students and faculty. The specific research goal of this project is to study the following projects using index theory: 1) entropy non-degeneracy between equivalent analytic flows; 2) the relationship between the growth rate of periodic points and the growth rate of the Lefschetz for analytic maps; 3) the relationship between the growth rate of periodic points and the degree for maps with sufficient regularity on a sphere. Through these three projects, we will show how to use the index to get entropy non-degeneracy and present how powerful index theory is in finding a topological lower bound for the growth rate of periodic orbits. Since the three projects are all of a strong topological flavor, these projects are closely related to the entropy conjecture. As a package, they will provide potential approaches and tools for the entropy conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多问题,如机械物体的运动、化学反应、人口增长和市场价格的动态,都可以用动态系统来建模,这些系统由一组状态和一个时间演化定律定义。有一个与动力系统相关的经典数字,称为它的熵,它是对系统复杂性的定量测量。动力学系统中一个几十年来一直没有解决的重要问题被称为舒布熵猜想。它的目的是利用系统的渐近信息来理解系统的熵的下界。由于这一猜想的性质,需要新的拓扑学和动力学多学科工具来完全解决这一猜想。这个项目致力于开发动力系统中的一个工具,称为指数理论,以提高我们对不动点附近的动力学的一般知识,并着眼于解决熵猜想。由于这项提议融合了数学的几个分支的想法,它将进一步鼓励学生和教职员工之间的互动和合作。本课题的具体研究目标是利用指数理论研究如下问题:1)等价解析流之间的非退化熵;2)周期点的增长率与解析映射的Lefschetz增长率之间的关系;3)周期点的增长率与球面上具有充分正则性的映射的度之间的关系。通过这三个项目,我们将展示如何利用指数来获得熵的非简并性,并展示指数理论在寻找周期轨道增长率的拓扑下界方面是多么强大。由于这三个项目都具有很强的拓扑性,所以这些项目都与熵猜想密切相关。作为一个整体,他们将为熵猜想提供潜在的方法和工具。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entropy rigidity for 3D conservative Anosov flows and dispersing billiards
  • DOI:
    10.1007/s00039-020-00547-z
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    J. de Simoi;Martin Leguil;Kurt Vinhage;Yun Yang
  • 通讯作者:
    J. de Simoi;Martin Leguil;Kurt Vinhage;Yun Yang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yun Yang其他文献

K3Sr3Li2Al4B6O20F: A Competitive Nonlinear Optical Crystal for Generation of 266 nm Laser
K3Sr3Li2Al4B6O20F:用于产生 266 nm 激光的具有竞争力的非线性光学晶体
  • DOI:
    10.1039/d2tc02073d
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun Yang;Shuzhao Huang;Shilie Pan
  • 通讯作者:
    Shilie Pan
Suppressing flow-induced vibration of HGA by an acoustic PZT actuator in hard disk drives
通过硬盘驱动器中的声学 PZT 执行器抑制 HGA 的流动引起的振动
  • DOI:
    10.1007/s00542-015-2763-5
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guoqing Zhang;Yun Yang;Hui Li;Shengnan Shen;Shijing Wu
  • 通讯作者:
    Shijing Wu
Using Silk-derived Magnetic Carbon Nanocomposites as Highly Efficient Nanozymes and Electromagnetic Absorbing Agents
使用丝衍生的磁性碳纳米复合材料作为高效纳米酶和电磁吸收剂
  • DOI:
    10.1016/j.cclet.2022.108084
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    9.1
  • 作者:
    Hao Wang;Xianhui Zhang;Yonghua Tang;Weifeng Rong;Jiachen Zhao;Chaoyu Fan;Zhisen Zhang;Zhijun Sun;Yun Yang;Youhui Lin
  • 通讯作者:
    Youhui Lin
Asymptotic normality of coefficients of some polynomials related to Dowling lattices
一些与Dowling格子有关的多项式系数的渐近正态性
  • DOI:
    10.2298/fil2009915l
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Lily Li Liu;Yun Yang;Wen Zhang
  • 通讯作者:
    Wen Zhang
Photoluminescence and defect evolution of nano-ZnO thin films at low temperature annealing
纳米ZnO薄膜低温退火的光致发光和缺陷演化
  • DOI:
    10.1007/s11431-012-5064-6
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun Yang;Zhenzhen Zhang;Xichang Bao;Renqiang Yang
  • 通讯作者:
    Renqiang Yang

Yun Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yun Yang', 18)}}的其他基金

Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
  • 批准号:
    2210717
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Standard Grant
Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
  • 批准号:
    1907316
  • 财政年份:
    2018
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Standard Grant
Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
  • 批准号:
    1810831
  • 财政年份:
    2018
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

A new in-silico tool for quantifying the impact of blood flow dynamics on cerebral capillary activity
一种新的计算机模拟工具,用于量化血流动力学对脑毛细血管活动的影响
  • 批准号:
    2888739
  • 财政年份:
    2023
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Studentship
Chemical-tool-driven research on heme dynamics
化学工具驱动的血红素动力学研究
  • 批准号:
    22H02223
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: A Flexion-Based Computational Fluid Dynamics Tool for the Fast Computation of Turbulent Flow over Complex Geometries
SBIR 第一阶段:基于弯曲的计算流体动力学工具,用于快速计算复杂几何形状的湍流
  • 批准号:
    2133757
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Standard Grant
Structural dynamics of WC-Co tool surface in Ti cutting process
Ti切削过程中WC-Co刀具表面的结构动力学
  • 批准号:
    22K20419
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Viral Tool Development Core: Visualization and manipulation of brain fluid dynamics by recombinant viral vectors
病毒工具开发核心:重组病毒载体对脑液动力学的可视化和操纵
  • 批准号:
    10516500
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
Bluebottle dynamics: towards a prediction tool for Surf Life Saving Aust.
Bluebottle 动力学:面向冲浪救生澳大利亚的预测工具。
  • 批准号:
    LP210200689
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Linkage Projects
Viral Tool Development Core: Visualization and manipulation of brain fluid dynamics by recombinant viral vectors
病毒工具开发核心:重组病毒载体对脑液动力学的可视化和操纵
  • 批准号:
    10673154
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
Disturbance-driven changes in ecosystem variability: a new tool for understanding ecological dynamics
生态系统变异性的干扰驱动变化:理解生态动态的新工具
  • 批准号:
    RGPIN-2018-05199
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Discovery Grants Program - Individual
Simulations of micro-dynamics of soil, tool, and crop residue using the discrete element method (DEM)
使用离散元法 (DEM) 模拟土壤、工具和作物残茬的微观动力学
  • 批准号:
    RGPIN-2019-05861
  • 财政年份:
    2022
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Discovery Grants Program - Individual
Disturbance-driven changes in ecosystem variability: a new tool for understanding ecological dynamics
生态系统变异性的干扰驱动变化:理解生态动态的新工具
  • 批准号:
    RGPIN-2018-05199
  • 财政年份:
    2021
  • 资助金额:
    $ 14.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了