Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference

合作研究:变分贝叶斯推理的理论和算法基础

基本信息

  • 批准号:
    2210717
  • 负责人:
  • 金额:
    $ 13.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Spectacular advances in data acquisition, processing and storage techniques offer modern-day statisticians a unique opportunity to analyze large and complex datasets of unprecedented richness which arise in many scientific investigations and in studies in the social and economic fields. Bayesian inference, which combines prior knowledge and data information into a posterior distribution, provides a popular paradigm for probabilistic modeling of complex multi-level datasets and for performing associated inferential or predictive tasks in a principled fashion. For most practical problems, computing the posterior probabilities require numerical approximations; to that end, sampling-based approaches such as Markov chain Monte Carlo and deterministic approximations have both received widespread attention. Among deterministic approaches based on optimization, variational approximations, also commonly referred to as variational inference, is highly popular due to its scalability to large datasets. Through this project, the investigators will explore statistical and algorithmic properties of popular variational procedures and develop new methodology and computational tools grounded on a strong theoretical foundation. The results are targeted to empower practitioners with a better understanding of situations where variational inference is likely to be successful and where potential pitfalls exist. The research will be disseminated through articles and talks at prominent outlets. Additionally, software packages for the methods developed will be made available publicly. The investigators are committed to enhancing the pedagogical component of the proposal through advising students and developing graduate and undergraduate topic courses at their respective institutions.Motivated by the increasing need to mitigate scalability issues in Bayesian computation, variational inference has tremendously grown in popularity over the last two decades as an approximate Bayesian computational technique. Despite the proven empirical successes of variational inference in large complex data domains, systematic investigations into its statistical properties have commenced only recently. Through this project, the investigators will pose a number of foundational questions to address theoretical challenges in understanding and explaining the great empirical success of variational approximations in parameter estimation, statistical inference, and model selection, coupled with applications in novel domains. The investigators will also develop general purpose sufficient conditions to certify convergence of popularly used variational algorithms. The theoretical development will employ tools from dynamical systems, functional optimization, and optimal transport, leading to a unified treatment of statistical and algorithmic aspects of variational inference. In light of this new theory, the investigators will develop modifications to existing algorithms with certifiably better convergence behaviors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据采集、处理和存储技术的惊人进步为现代统计学家提供了一个独特的机会来分析在许多科学调查以及社会和经济领域的研究中出现的具有前所未有丰富的大型和复杂的数据集。贝叶斯推理将先验知识和数据信息结合到后验分布中,为复杂的多水平数据集的概率建模和以有原则的方式执行相关的推理或预测任务提供了一种流行的范例。对于大多数实际问题,后验概率的计算需要数值近似;为此,基于抽样的方法,如马尔科夫链蒙特卡罗和确定性近似,都受到了广泛的关注。在基于最优化的确定性方法中,变分近似,通常也被称为变分推理,由于其对大数据集的可扩展性而非常受欢迎。通过这个项目,研究人员将探索常用变分程序的统计和算法特性,并在坚实的理论基础上开发新的方法和计算工具。这些结果旨在使从业者能够更好地理解变分推理可能成功的情况和存在潜在陷阱的情况。这项研究将通过在知名媒体发表文章和演讲的方式进行传播。此外,开发的方法的软件包将公开提供。研究人员致力于通过在各自的机构为学生提供建议并开发研究生和本科生主题课程来增强该提案的教学部分。受缓解贝叶斯计算中可伸缩性问题的日益增长的需求的推动,变分推理作为一种近似贝叶斯计算技术在过去20年中得到了极大的普及。尽管变分推理在大型复杂数据域中的经验证明是成功的,但对其统计性质的系统研究直到最近才开始。通过这个项目,研究人员将提出一些基础性问题,以解决在理解和解释变分近似在参数估计、统计推理和模型选择方面的巨大经验成功以及在新领域的应用方面的理论挑战。研究人员还将开发通用的充分条件来证明常用变分算法的收敛。理论发展将使用动力系统、功能优化和最优运输的工具,导致变分推理的统计和算法方面的统一处理。根据这一新理论,调查人员将对现有算法进行修改,使其具有更好的收敛行为。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yun Yang其他文献

Robust domain variants and ferroelectric property in epitaxial BiFeO3 films
外延 BiFeO3 薄膜中的鲁棒域变体和铁电特性
  • DOI:
    10.1088/2053-1591/abd3e4
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Xiaojun Qiao;Wenping Geng;Jianwei Meng;Yao Sun;Kaixi Bi;Yun Yang;Junbin Yu;Jian He;Xiujian Chou
  • 通讯作者:
    Xiujian Chou
Exploring fluorinated electrolyte for high-voltage and high-safety Li-ion cells with Li(Ni0.8Mn0.1Co0.1)O2 cathode
以Li(Ni0.8Mn0.1Co0.1)O2为正极的高电压、高安全性锂离子电池氟化电解液的探索
Computational study on the electronic states of tungsten nitride molecule
氮化钨分子电子态的计算研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lidan Xiao;Yun Yang;Wenli Zou;Bing Yan
  • 通讯作者:
    Bing Yan
“Removing Center” an effective structure design strategy for nonlinear optical crystals
– 去除中心 – 非线性光学晶体的有效结构设计策略
  • DOI:
    10.1021/acs.chemmater.2c00061
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Shuzhao Huang;Yun Yang;Jianbang Chen;Wenqi Jin;Shichao Cheng;Zhihua Yang;Shilie Pan
  • 通讯作者:
    Shilie Pan
Linear feature separation from topographic maps using energy density and shear transform
使用能量密度和剪切变换从地形图中分离线性特征

Yun Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yun Yang', 18)}}的其他基金

Index in Dynamics: A Tool to Prove the Entropy Conjecture
动力学索引:证明熵猜想的工具
  • 批准号:
    2000167
  • 财政年份:
    2020
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
  • 批准号:
    1907316
  • 财政年份:
    2018
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
  • 批准号:
    1810831
  • 财政年份:
    2018
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Aeolian Grain Entrainment Over Flexible Vegetation Canopies: Theoretical Models, Laboratory Experiments and Fieldwork
合作研究:灵活植被冠层的风沙颗粒夹带:理论模型、实验室实验和实地考察
  • 批准号:
    2327916
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329938
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229101
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: SaTC: Medium: Theoretical Foundations of Lattice-Based Cryptography
合作研究:AF:SaTC:媒介:基于格的密码学的理论基础
  • 批准号:
    2312296
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Simulation and Theoretical Analysis of Meteor Evolution over Scales Ranging from Sub-microseconds to Minutes
合作研究:亚微秒到分钟尺度的流星演化模拟与理论分析
  • 批准号:
    2301644
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: A Comprehensive Theoretical Study of Cosmological Magnetic Fields and Turbulence: from the Early to Late Time Universe
合作研究:宇宙磁场和湍流的综合理论研究:从宇宙早期到晚期
  • 批准号:
    2307699
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: A Comprehensive Theoretical Study of Cosmological Magnetic Fields and Turbulence: from the Early to Late Time Universe
合作研究:宇宙磁场和湍流的综合理论研究:从宇宙早期到晚期
  • 批准号:
    2307698
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
  • 批准号:
    2329939
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229100
  • 财政年份:
    2023
  • 资助金额:
    $ 13.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了