Properties of Approximate Inference for Complex High-Dimensional Models
复杂高维模型的近似推理的性质
基本信息
- 批准号:1811614
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern scientific data acquisition often creates datasets with many measurements on a large sample size of individuals. The structure of interest in the data may be low dimensional or sparse. Examples arise in scientific domains from econometrics to genomics and image and signal processing and beyond. The project explores approximate methods of statistical inference for such structure in a representative set of contemporary settings: high dimensional estimation, generalized linear mixed models and low rank multivariate models. It aims to develop approximate methods backed by an optimality theory and/or performance guarantees. The work is expected to provide new theoretical insights into current problems in specific application domains such as Magnetic Resonance Imaging and quantitative genetics.The project will bring ideas from classical decision theory to compressed sensing and robust linear modeling, rigorously solving nonconvex optimization problems and obtaining reconstruction performance rigorously better than traditional convex optimization methods. It will exploit decision theoretic ideas in the proposer's previous work to provide new theoretical insights into a pressing practical problem in compressed sensing -- deriving optimal variable-density sampling schedules applicable to Magnetic Resonance Imaging and NMR spectroscopy. The project will also study theoretically the statistical performance of some methods for deterministic approximate inference popular in machine learning, but for which little attention has been given to properties such as consistency, asymptotic normality and efficiency. The study will begin with concrete examples in the realm of generalized linear mixed models, from a frequentist perspective, and seek to establish first-of-kind results for asymptotic efficiency of Expectation Propagation. Finally, the project will study approximate inference for the eigenstructure of highly multivariate models with low dimensional structure. It will adapt James' classical framework for multivariate analysis to a broad class of multispike models. Through collaboration with quantitative geneticists, it will develop methods for inference for low dimensional structure in high dimensional genetic covariance matrices. In both cases, methods from random matrix theory will be essential.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代科学数据采集经常在大量个体样本上创建具有许多测量值的数据集。数据中感兴趣的结构可能是低维的或稀疏的。从计量经济学到基因组学、图像和信号处理等科学领域都有这样的例子。该项目探讨了在一组具有代表性的当代设置中这种结构的统计推断的近似方法:高维估计,广义线性混合模型和低秩多元模型。它旨在开发由最优性理论和/或性能保证支持的近似方法。这项工作有望为磁共振成像和定量遗传学等特定应用领域的当前问题提供新的理论见解。该项目将经典决策理论的思想引入压缩感知和鲁棒线性建模,严格解决非凸优化问题,并获得严格优于传统凸优化方法的重构性能。它将利用提议者以前工作中的决策理论思想,为压缩感知中的一个紧迫的实际问题提供新的理论见解-推导适用于磁共振成像和核磁共振波谱的最佳可变密度采样计划。该项目还将从理论上研究机器学习中流行的一些确定性近似推理方法的统计性能,但很少关注一致性,渐近正态性和效率等性质。本研究将从广义线性混合模型领域的具体例子开始,从频率论的角度出发,寻求建立期望传播的渐近效率的第一类结果。最后,本课题将研究具有低维结构的高多元模型的特征结构的近似推理。它将把詹姆斯的经典多变量分析框架应用于广泛的多尖峰模型。通过与定量遗传学家的合作,它将开发高维遗传协方差矩阵中低维结构的推理方法。在这两种情况下,随机矩阵理论的方法将是必不可少的。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Larry Brown’s Work on Admissibility
拉里·布朗 (Larry Brown) 关于可受理性的著作
- DOI:10.1214/19-sts744
- 发表时间:2019
- 期刊:
- 影响因子:5.7
- 作者:Johnstone, Iain M.
- 通讯作者:Johnstone, Iain M.
On minimax optimality of sparse Bayes predictive density estimates
稀疏贝叶斯预测密度估计的极小极大最优性
- DOI:10.1214/21-aos2086
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mukherjee, Gourab;Johnstone, Iain M.
- 通讯作者:Johnstone, Iain M.
Fast and Accurate Binary Response Mixed Model Analysis Via Expectation Propagation.
通过期望传播的快速准确的二元响应混合模型分析。
- DOI:10.1080/01621459.2019.1665529
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
Tracy–Widom at each edge of real covariance and MANOVA estimators
Tracy-Widom 在真实协方差和多元方差分析估计量的每个边缘
- DOI:10.1214/21-aap1754
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fan, Zhou;Johnstone, Iain M.
- 通讯作者:Johnstone, Iain M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iain Johnstone其他文献
Initial functional and economic status of patients with multivessel coronary artery disease randomized in the Bypass Angioplasty Revascularization Investigation (BARI).
旁路血管成形术血运重建调查 (BARI) 中随机分配的多支冠状动脉疾病患者的初始功能和经济状况。
- DOI:
10.1016/s0002-9149(99)80393-2 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
M. Hlatky;Edgar D. Charles;Fred T. Nobrega;Kathryn Gelman;Kathryn Gelman;Iain Johnstone;Joseph Melvin;Thomas J. Ryan;R. Wiens;Bertram Pitt;G. Reeder;Hugh C. Smith;P. Whitlow;George L. Zorn;David J. Frid;Daniel B. Mark - 通讯作者:
Daniel B. Mark
233: Multiparametric high dimensional analysis of normal & VZV infected human tonsil T cells at a single cell resolution by mass cytometry
- DOI:
10.1016/j.cyto.2013.06.236 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:
- 作者:
Nandini Sen;Gourab Mukherjee;Sean C. Bendall;Adrish Sen;Astraea Jager;Phil Sung;Garry P. Nolan;Iain Johnstone;Ann M. Arvin - 通讯作者:
Ann M. Arvin
Iain Johnstone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iain Johnstone', 18)}}的其他基金
Estimation and testing in low rank multivariate models
低秩多元模型中的估计和测试
- 批准号:
1407813 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
High dimensional data: new phenomena and theory in modeling and approximation
高维数据:建模和近似中的新现象和理论
- 批准号:
0906812 - 财政年份:2009
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
A genetic analysis of the response to the presence of glycine
对甘氨酸存在反应的遗传分析
- 批准号:
G0401202/1 - 财政年份:2006
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Rigorous Methods for Dimensionality Reduction of High-Dimensional Data
高维数据降维的严格方法
- 批准号:
0505303 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
New Statistical Challenges Posed by Multiscale and Adaptive Representations
多尺度和自适应表示带来的新统计挑战
- 批准号:
0072661 - 财政年份:2000
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Mathematical Sciences/GIG: "Group Infrastructure Grant for Stanford Statistics"
数学科学/GIG:“斯坦福统计集团基础设施拨款”
- 批准号:
9631278 - 财政年份:1996
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Mathematical Sciences: Adaptive Estimation: New Tools, New Settings
数学科学:自适应估计:新工具,新设置
- 批准号:
9505151 - 财政年份:1995
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
U.S.-Australia Joint Workshop: New Directions in Nonparametric Curve Estimation / Canberra, Australia / June 1994
美国-澳大利亚联合研讨会:非参数曲线估计的新方向 / 澳大利亚堪培拉 / 1994 年 6 月
- 批准号:
9316006 - 财政年份:1994
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
PYI: Mathematical Sciences: Studies in New Multivariate Methods and Decision Theory
PYI:数学科学:新多元方法和决策理论研究
- 批准号:
8451750 - 财政年份:1985
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似海外基金
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
- 批准号:
EP/X022595/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
- 批准号:
EP/X024881/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
RI: Small: Approximate Inference for Planning and Reinforcement Learning
RI:小:规划和强化学习的近似推理
- 批准号:
2246261 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Approximate Inference for Latent Position Models
潜在位置模型的近似推理
- 批准号:
RGPIN-2022-03012 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Approximate inference at the intersection of neuroscience and machine learning
职业:神经科学和机器学习交叉点的近似推理
- 批准号:
2143440 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Establishing a Flexible and Reliable Automatic Approximate Inference Method to Accelerate the Social Execution of Statistical Modeling.
建立灵活可靠的自动近似推理方法,加速统计建模的社会化执行。
- 批准号:
21J11859 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Approximate Bayesian Inference by Density Ratio Estimation
通过密度比估计进行近似贝叶斯推理
- 批准号:
2437825 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Studentship
Approximate Manifold Sampling Robust Bayesian Inference for Machine Learning
用于机器学习的近似流形采样鲁棒贝叶斯推理
- 批准号:
2277956 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Studentship
Consistent and fast inference in compartmental models of epidemics using Poisson Approximate Likelihoods
使用泊松近似似然对流行病区室模型进行一致且快速的推断
- 批准号:
2266490 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Studentship














{{item.name}}会员




