New Statistical Challenges Posed by Multiscale and Adaptive Representations

多尺度和自适应表示带来的新统计挑战

基本信息

  • 批准号:
    0072661
  • 负责人:
  • 金额:
    $ 85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2005-06-30
  • 项目状态:
    已结题

项目摘要

NEW STATISTICAL CHALLENGES POSED BY MULTISCALE AND ADAPTIVEREPRESENTATIONS D.L. Donoho & I.M. Johnstone, PI's.Project period: 07/01/00 -- 06/30/05The project will address the following specific topics:1. Estimation in tomography: the curvelet tight frame ofrepresentation seems, according to preliminary calculations, toachieve faster rates of convergence than traditional tomographicmethods.2. Estimation and testing in time-frequency analysis: a new tightframe of chirplets has been built by deploying curvelets in thetime-frequency plane. The new representation has promise for detection andestimation of chirps in the presence of noise.3. Recent work in computational vision asks ``what is the best basisfor representing natural images?'' It is proposed that many empiricalresults in the rapidly growing literature on this topic might beexplained and improved using analytically-constructed representations:ridgelets and curvelets.4. Geometry-driven diffusions are popular in applied image processing-- but their quantitative performance is not well-understood. It isproposed to develop a quantitative statistical theory using recenttools such as multiscale ridgelets.5. Extensions of Sparsity-Based ideas. Problems of finding `edgels inwhite noise' and `subspaces in white noise' offer challenging andtimely directions in which to generalize existing sparsity ideas.6. Testing Sparse Means. An adaptive approach is suggested fortesting if the mean of a random vector is nonzero, when the vectormight exhibit an unknown degree of sparsity.7. Asymptotics of top eigenvalues of large covariance matrices.A program is set out to develop statistical theory for principalcomponents of large data matrices based on recent progress inrandom matrix theory.Consistent with the principle of ``reproducible research'', softwareand figures from this project will be made available in futurereleases of the public domain WaveLab system.In recent years, research in wavelets and time-frequency methods hasbroadened to construct new systems of representation, includingsystems custom-tailored for specific phenomena. Examples includewavelet packets and cosine packets, and very recently, systems likeedgelets, ridgelets, chirplets, warplets, and curvelets. In parallel,research in statistical analysis and cognate fields allows datathemselves to dictate the design of their own optimal systems ofrepresentation. Principal components (i.e. Karhunen-Loevedecomposition) is the oldest example of such data-adaptiverepresentation; many newer ideas have been proposed recently, such asindependent components analysis. The proposers have beenactive in both domains, creating new image and signalrepresentations and developing statistical theory to underpin adaptivesignal representations. The current project will (a) pursue twoopportunities arising from the recent introduction of curvelets, (b)address two active applied research areas, computational vision andgeometry driven diffusions, and (c) attack some issues which areargued to be at the core of new developments in statistical decisiontheory. Topic (a) may have implications for applied work intomography, image and signal processing, and (c) may impact applieduses of principal components in domains such as climate and globalchange studies.
多尺度和自适应表示带来的新统计挑战 D.L. Donoho 和 I.M. Johnstone,PI's。项目周期:07/01/00 -- 06/30/05该项目将解决以下具体主题:1。层析成像中的估计:根据初步计算,曲波紧表示框架似乎比传统层析成像方法能实现更快的收敛速度。 2.时频分析中的估计和测试:通过在时频平面上部署曲线小波,构建了新的线性调频小帧。 新的表示有望在存在噪声的情况下检测和估计线性调频脉冲。3.计算视觉方面的最新工作提出了“表示自然图像的最佳基础是什么?”有人提出,有关该主题的快速增长的文献中的许多经验结果可以使用分析构造的表示来解释和改进:脊波和曲线。4。几何驱动的扩散在应用图像处理中很流行,但它们的定量性能尚不清楚。建议使用多尺度脊波等最新工具开发定量统计理论。5.基于稀疏性的思想的扩展。寻找“白噪声中的边缘”和“白噪声中的子空间”的问题为推广现有的稀疏性思想提供了具有挑战性且及时的方向。6.测试稀疏均值。 当向量可能表现出未知程度的稀疏性时,建议采用自适应方法来测试随机向量的平均值是否非零。7。大协方差矩阵的顶特征值的渐近。基于随机矩阵理论的最新进展,制定了一个计划来开发大数据矩阵主成分的统计理论。与“可重复研究”的原则相一致,该项目的软件和数据将在公共域 WaveLab 系统的未来版本中提供。近年来, 小波和时频方法已经扩展到构建新的表示系统,包括为特定现象定制的系统。 示例包括小波包和余弦包,以及最近的系统,如edgelet、ridgelet、chirplet、warplet 和curvelet。 与此同时,统计分析和同源领域的研究允许数据本身决定其最佳表示系统的设计。 主成分(即 Karhunen-Loevedecomposition)是此类数据自适应表示的最古老的示例;最近提出了许多更新的想法,例如独立成分分析。 提议者在这两个领域都很活跃,创造了新的图像和信号表示,并发展了统计理论来支持自适应信号表示。 当前的项目将(a)抓住最近引入的曲线小波带来的两个机会,(b)解决两个活跃的应用研究领域,计算视觉和几何驱动扩散,以及(c)解决一些被认为是统计决策理论新发展核心的问题。主题(a)可能对断层扫描、图像和信号处理的应用工作产生影响,(c)可能影响主要成分在气候和全球变化研究等领域的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iain Johnstone其他文献

Initial functional and economic status of patients with multivessel coronary artery disease randomized in the Bypass Angioplasty Revascularization Investigation (BARI).
旁路血管成形术血运重建调查 (BARI) 中随机分配的多支冠状动脉疾病患者的初始功能和经济状况。
  • DOI:
    10.1016/s0002-9149(99)80393-2
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hlatky;Edgar D. Charles;Fred T. Nobrega;Kathryn Gelman;Kathryn Gelman;Iain Johnstone;Joseph Melvin;Thomas J. Ryan;R. Wiens;Bertram Pitt;G. Reeder;Hugh C. Smith;P. Whitlow;George L. Zorn;David J. Frid;Daniel B. Mark
  • 通讯作者:
    Daniel B. Mark
233: Multiparametric high dimensional analysis of normal & VZV infected human tonsil T cells at a single cell resolution by mass cytometry
  • DOI:
    10.1016/j.cyto.2013.06.236
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nandini Sen;Gourab Mukherjee;Sean C. Bendall;Adrish Sen;Astraea Jager;Phil Sung;Garry P. Nolan;Iain Johnstone;Ann M. Arvin
  • 通讯作者:
    Ann M. Arvin

Iain Johnstone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iain Johnstone', 18)}}的其他基金

Properties of Approximate Inference for Complex High-Dimensional Models
复杂高维模型的近似推理的性质
  • 批准号:
    1811614
  • 财政年份:
    2018
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant
Estimation and testing in low rank multivariate models
低秩多元模型中的估计和测试
  • 批准号:
    1407813
  • 财政年份:
    2014
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant
High dimensional data: new phenomena and theory in modeling and approximation
高维数据:建模和近似中的新现象和理论
  • 批准号:
    0906812
  • 财政年份:
    2009
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
A genetic analysis of the response to the presence of glycine
对甘氨酸存在反应的遗传分析
  • 批准号:
    G0401202/1
  • 财政年份:
    2006
  • 资助金额:
    $ 85万
  • 项目类别:
    Research Grant
Rigorous Methods for Dimensionality Reduction of High-Dimensional Data
高维数据降维的严格方法
  • 批准号:
    0505303
  • 财政年份:
    2005
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: "Group Infrastructure Grant for Stanford Statistics"
数学科学/GIG:“斯坦福统计集团基础设施拨款”
  • 批准号:
    9631278
  • 财政年份:
    1996
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Adaptive Estimation: New Tools, New Settings
数学科学:自适应估计:新工具,新设置
  • 批准号:
    9505151
  • 财政年份:
    1995
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant
U.S.-Australia Joint Workshop: New Directions in Nonparametric Curve Estimation / Canberra, Australia / June 1994
美国-澳大利亚联合研讨会:非参数曲线估计的新方向 / 澳大利亚堪培拉 / 1994 年 6 月
  • 批准号:
    9316006
  • 财政年份:
    1994
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
PYI: Mathematical Sciences: Studies in New Multivariate Methods and Decision Theory
PYI:数学科学:新多元方法和决策理论研究
  • 批准号:
    8451750
  • 财政年份:
    1985
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
  • 批准号:
    2238656
  • 财政年份:
    2023
  • 资助金额:
    $ 85万
  • 项目类别:
    Continuing Grant
Resolving single-cell analysis challenges via data-driven decision frameworks and novel statistical methods
通过数据驱动的决策框架和新颖的统计方法解决单细胞分析挑战
  • 批准号:
    10707308
  • 财政年份:
    2022
  • 资助金额:
    $ 85万
  • 项目类别:
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers from and for Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:推进统计基础和前沿,应对新出现的天文数据挑战
  • 批准号:
    EP/W015080/1
  • 财政年份:
    2022
  • 资助金额:
    $ 85万
  • 项目类别:
    Research Grant
Statistical Challenges and Methods in the Analysis of High Dimensional and Complex Structured Data
高维复杂结构化数据分析中的统计挑战和方法
  • 批准号:
    RGPIN-2018-05475
  • 财政年份:
    2022
  • 资助金额:
    $ 85万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical solutions for the open challenges of integrated population models.
针对综合人口模型的开放挑战的统计解决方案。
  • 批准号:
    2753510
  • 财政年份:
    2022
  • 资助金额:
    $ 85万
  • 项目类别:
    Studentship
Development of Innovative Statistical Tools to Address Data-Analytic Challenges in Physics and Astronomy
开发创新统计工具来解决物理和天文学中的数据分析挑战
  • 批准号:
    RGPIN-2021-03985
  • 财政年份:
    2022
  • 资助金额:
    $ 85万
  • 项目类别:
    Discovery Grants Program - Individual
New Challenges in Statistical Inference with Regularized Optimal Transport
正则化最优传输统计推断的新挑战
  • 批准号:
    2210368
  • 财政年份:
    2022
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
Development of Innovative Statistical Tools to Address Data-Analytic Challenges in Physics and Astronomy
开发创新统计工具来解决物理和天文学中的数据分析挑战
  • 批准号:
    RGPIN-2021-03985
  • 财政年份:
    2021
  • 资助金额:
    $ 85万
  • 项目类别:
    Discovery Grants Program - Individual
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers for and from Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:为新出现的天文数据挑战推进统计基础和前沿
  • 批准号:
    2113605
  • 财政年份:
    2021
  • 资助金额:
    $ 85万
  • 项目类别:
    Standard Grant
Statistical Challenges and Methods in the Analysis of High Dimensional and Complex Structured Data
高维复杂结构化数据分析中的统计挑战和方法
  • 批准号:
    RGPIN-2018-05475
  • 财政年份:
    2021
  • 资助金额:
    $ 85万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了