Mathematical Sciences: Adaptive Estimation: New Tools, New Settings

数学科学:自适应估计:新工具,新设置

基本信息

  • 批准号:
    9505151
  • 负责人:
  • 金额:
    $ 95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-15 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

Proposal: DMS 95- 05151 PI(s): Iain Johnstone - 1981, David Donoho - 1984 Institution: Stanford Title: Adaptive Estimation, New Tools, New Settings Abstract: The research develops fundamental tools in theoretical statistics to aid understanding of such adaptive procedures, and shows how to tune them so they are noise-cognizant and stable. Underlying the approach are a) the idea of oracles, which know perfectly well how to adapt representations ideally, b) the idea that the goal of adaptation in the presence of noisy data is to quantify how closely realizable procedures (which do not have privileged information about the object) can mimic an oracle, and c) the design of procedures coming as close as possible to the oracle. The project also develops methods for comparing different adaptation schemes by comparing oracles of different kinds, for example time-frequency oracles and time-scale oracles. This is an outgrowth of our earlier results on wavelets, where this approach was used to show that wavelets have a property of being nearly-ideally spatially adaptive. In addition a computational environment is being developed for implementing and systematically testing such approaches. As a further outgrowth of the proposers' earlier work on wavelets, the project studies a number of improvements and extensions of wavelet shrinkage, for example in the directions of classification, confidence bands, correlated data and selection of orthogonal bases. This research seeks to develop statistical theory and computational tools in the general area of adaptive methods of representing and analyzing signals, images and other objects. On the one hand, this project is prompted by the extremely high interest in adaptation on the part of people working in fields of signal processing, image processing, time-frequency analysis, speech processing analysis. New signal representations appear in these fields almost daily, along with new principles fo r selecting representations. Such representations are useful for data compression, which is not the main interest here; but they are also useful for noise removal and signal interpretation, which are important areas for statisticians to consider. On the other hand, this project is prompted by the goal of developing statistical theory which can give clear understanding of such adaptive schemes. Some of the most highly adaptive schemes being suggested in signal processing pose a real challenge to traditional statistical thinking. For example, some adaptation schemes search (either explicitly or implicitly) through thousands or millions of representations of a signal in order to arrive at their final result. A statistician, when thinking about applying such methods to a noisy signal, is by training forced to ask to what extent the result merely reflects the effects of snooping through noise, detecting pseudo-structure which actually due to noise, and due to the vigorous search. The research seeks to develop fundamental tools in theoretical statistics to aid understanding of such adaptive procedures, and shows how to tune them so they are noise-cognizant and stable. This project may have two spin-offs. First, some of the results may be stimulating and/or useful to the community of ``inventors of adaptive procedures'' in signal, image, speech, and time/frequency, and related communities. Second, the theoretical work may stimulate statisticians to take more interest in making further contributions in such directions.
建议:DMS 95-05151 PI(S):Iain Johnstone-1981年,David Donoho-1984年机构:斯坦福大学标题:自适应估计,新工具,新设置摘要:这项研究开发了理论统计中的基本工具,以帮助理解这种自适应过程,并展示了如何调整它们,使它们能够识别噪声和稳定。这种方法的基础是a)Oracle的思想,它非常清楚如何在理想情况下调整表示,b)在有噪声的数据存在的情况下进行适应的目标是量化可实现的过程(没有关于对象的特权信息)可以模仿Oracle的程度,以及c)尽可能接近Oracle的过程的设计。该项目还开发了通过比较不同类型的先知来比较不同适应方案的方法,例如时频先知和时间尺度先知。这是我们早期关于小波的结果的推广,其中该方法被用来表明小波具有近理想的空间自适应的性质。此外,正在开发一个计算环境,用于执行和系统地测试这些方法。作为作者早期小波工作的进一步发展,该项目研究了小波收缩的一些改进和扩展,例如在分类、置信度、相关数据和正交基的选择方面。这项研究试图在表示和分析信号、图像和其他对象的自适应方法的一般领域发展统计理论和计算工具。一方面,这个项目是由信号处理、图像处理、时频分析、语音处理分析等领域的工作人员对改编的极高兴趣推动的。这些领域几乎每天都会出现新的信号表示法,以及选择表示法的新原则。这些表示对于数据压缩是有用的,这不是这里的主要兴趣;但它们也对噪声去除和信号解释有用,这是统计学家要考虑的重要领域。另一方面,这个项目是由发展统计理论的目标推动的,该理论可以清楚地理解这种适应性方案。信号处理中提出的一些适应性最强的方案对传统的统计思维构成了真正的挑战。例如,一些自适应方案(显式或隐式地)搜索数千或数百万个信号的表示,以便得到它们的最终结果。统计学家在考虑将这些方法应用于有噪声的信号时,通过培训被迫询问结果在多大程度上仅仅反映了通过噪声进行窥探、检测实际上由于噪声以及由于大力搜索而产生的伪结构的效果。这项研究试图开发理论统计中的基本工具,以帮助理解这种适应过程,并展示如何调整它们,使它们能够识别噪音和稳定。这个项目可能有两个衍生产品。首先,一些结果可能对信号、图像、语音和时间/频率方面的“自适应程序发明者”社区以及相关社区具有刺激性和/或有用的作用。其次,理论工作可能会激发统计学家对在这些方向上做出进一步贡献的更大兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iain Johnstone其他文献

Initial functional and economic status of patients with multivessel coronary artery disease randomized in the Bypass Angioplasty Revascularization Investigation (BARI).
旁路血管成形术血运重建调查 (BARI) 中随机分配的多支冠状动脉疾病患者的初始功能和经济状况。
  • DOI:
    10.1016/s0002-9149(99)80393-2
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hlatky;Edgar D. Charles;Fred T. Nobrega;Kathryn Gelman;Kathryn Gelman;Iain Johnstone;Joseph Melvin;Thomas J. Ryan;R. Wiens;Bertram Pitt;G. Reeder;Hugh C. Smith;P. Whitlow;George L. Zorn;David J. Frid;Daniel B. Mark
  • 通讯作者:
    Daniel B. Mark
233: Multiparametric high dimensional analysis of normal & VZV infected human tonsil T cells at a single cell resolution by mass cytometry
  • DOI:
    10.1016/j.cyto.2013.06.236
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nandini Sen;Gourab Mukherjee;Sean C. Bendall;Adrish Sen;Astraea Jager;Phil Sung;Garry P. Nolan;Iain Johnstone;Ann M. Arvin
  • 通讯作者:
    Ann M. Arvin

Iain Johnstone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iain Johnstone', 18)}}的其他基金

Properties of Approximate Inference for Complex High-Dimensional Models
复杂高维模型的近似推理的性质
  • 批准号:
    1811614
  • 财政年份:
    2018
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Estimation and testing in low rank multivariate models
低秩多元模型中的估计和测试
  • 批准号:
    1407813
  • 财政年份:
    2014
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
High dimensional data: new phenomena and theory in modeling and approximation
高维数据:建模和近似中的新现象和理论
  • 批准号:
    0906812
  • 财政年份:
    2009
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
A genetic analysis of the response to the presence of glycine
对甘氨酸存在反应的遗传分析
  • 批准号:
    G0401202/1
  • 财政年份:
    2006
  • 资助金额:
    $ 95万
  • 项目类别:
    Research Grant
Rigorous Methods for Dimensionality Reduction of High-Dimensional Data
高维数据降维的严格方法
  • 批准号:
    0505303
  • 财政年份:
    2005
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
New Statistical Challenges Posed by Multiscale and Adaptive Representations
多尺度和自适应表示带来的新统计挑战
  • 批准号:
    0072661
  • 财政年份:
    2000
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: "Group Infrastructure Grant for Stanford Statistics"
数学科学/GIG:“斯坦福统计集团基础设施拨款”
  • 批准号:
    9631278
  • 财政年份:
    1996
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
U.S.-Australia Joint Workshop: New Directions in Nonparametric Curve Estimation / Canberra, Australia / June 1994
美国-澳大利亚联合研讨会:非参数曲线估计的新方向 / 澳大利亚堪培拉 / 1994 年 6 月
  • 批准号:
    9316006
  • 财政年份:
    1994
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
PYI: Mathematical Sciences: Studies in New Multivariate Methods and Decision Theory
PYI:数学科学:新多元方法和决策理论研究
  • 批准号:
    8451750
  • 财政年份:
    1985
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CBMS Regional Conference in the Mathematical Sciences - Adaptive Finite Element Methods for Partial Differential Equations; Spring 2009, College Station, TX
CBMS 数学科学区域会议 - 偏微分方程的自适应有限元方法;
  • 批准号:
    0834176
  • 财政年份:
    2009
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Adaptive Distribution-free in Design of Experiments
数学科学:实验设计中的自适应无分布
  • 批准号:
    9631168
  • 财政年份:
    1996
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Studies in Stochastic Adaptive Control
数学科学:随机自适应控制研究
  • 批准号:
    9623439
  • 财政年份:
    1996
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences and Computer Research: Higher Order Finite Element Methods and Adaptive Approaches
数学科学和计算机研究:高阶有限元方法和自适应方法
  • 批准号:
    9596223
  • 财政年份:
    1995
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Entropy-Controlled Adaptive Finite Element Simulations of Compressible Gas Flow
数学科学:可压缩气体流动的熵控制自适应有限元模拟
  • 批准号:
    9414480
  • 财政年份:
    1995
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Solutions-Adaptive Grid Partitioning and Variable Ordering for PDEs
数学科学:解决方案 - 偏微分方程的自适应网格划分和变量排序
  • 批准号:
    9505110
  • 财政年份:
    1995
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Computational Error Estimation and Adaptive Error Control for Numerical Methods for Differential Equations
数学科学:微分方程数值方法的计算误差估计和自适应误差控制
  • 批准号:
    9506519
  • 财政年份:
    1995
  • 资助金额:
    $ 95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Existence and Computation of Optimal Markov Controls for Adaptive Control Problems
数学科学:自适应控制问题的最优马尔可夫控制的存在性和计算
  • 批准号:
    9404990
  • 财政年份:
    1994
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Adaptive Spatial Regression and Classification
数学科学:自适应空间回归和分类
  • 批准号:
    9403804
  • 财政年份:
    1994
  • 资助金额:
    $ 95万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Adaptive Local Grid Refinement for Composititional Reservoir Simulation
数学科学:组合油藏模拟的自适应局部网格细化
  • 批准号:
    9407029
  • 财政年份:
    1994
  • 资助金额:
    $ 95万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了