Collaborative Research: Statistical Analysis of Partially Observed Shapes in Two Dimensions
合作研究:二维部分观察形状的统计分析
基本信息
- 批准号:1811969
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classification of shapes has many important applications in a variety of fields. For example, anthropologists use shape classification on fossilized faunal teeth to reconstruct past environments and on variation in the shapes of stone tools to assess different technological strategies. Other applications include classification of plants based on the shape of their leaves and identification of shapes of tumors. While there are many statistical tools that can be used for classification, most methods are based on complete shapes with relatively few methods available for partially observed or incomplete shapes. This project focuses of the development of new statistical methodology, based on the ideas of multiple imputation, for the analysis of partially observed shapes.This project proposes as a starting point leveraging the ideas of nonparametric, hot-deck type multiple imputation to shapes that are defined by unlabeled points and/or functions, as opposed to shapes defined by landmarks where traditional methods of multiple imputation may be applied. The proposed method involves matching partially observed shapes to fully observed shapes, randomly choosing a fully observed donor shape among the shapes that are good matches for the partial shape, and then completing the partial shape with the unmatched part of the donor shape. A simulation study will be conducted to compare the relative merits of different partial matching methods. The imputation framework will be tested using teeth from the Family Bovidae, whose classification plays an important role in biological anthropology for identifying the taxa of specimens, which in turn is used to reconstruct paleoenvirnoments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
形状的分类在许多领域有着重要的应用。例如,人类学家利用化石动物牙齿的形状分类来重建过去的环境,并利用石器形状的变化来评估不同的技术策略。 其他应用包括基于叶子形状的植物分类和肿瘤形状的识别。 虽然有许多统计工具可用于分类,但大多数方法都是基于完整的形状,对于部分观察到的或不完整的形状,可用的方法相对较少。本项目的重点是开发新的统计方法,基于多重插补的思想,用于部分观察到的形状的分析。本项目的出发点是利用非参数,热甲板类型的多重插补的思想来定义由未标记的点和/或功能,而不是由地标定义的形状,其中可以应用传统的多重插补方法。 所提出的方法涉及将部分观察到的形状匹配到完全观察到的形状,在与部分形状良好匹配的形状中随机选择完全观察到的供体形状,然后用供体形状的不匹配部分完成部分形状。将进行模拟研究,以比较不同的部分匹配方法的相对优点。 估算框架将使用来自牛科的牙齿进行测试,牛科的分类在生物人类学中起着重要作用,用于识别标本的类群,进而用于重建古环境。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ofer Harel其他文献
Guest Editorial: Articles selected from the 2020 International Conference on Health Policy Statistics
- DOI:
10.1007/s10742-021-00240-0 - 发表时间:
2021-02-02 - 期刊:
- 影响因子:1.600
- 作者:
Catherine M. Crespi;Ofer Harel - 通讯作者:
Ofer Harel
Now You See It, Now You Don’t: A Simulation and Illustration of the Importance of Treating Incomplete Data in Estimating Race Effects in Sentencing
现在您看到了,现在您没有:模拟和说明在估计量刑中的种族影响时处理不完整数据的重要性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.6
- 作者:
Benjamin Stockton;C. Strange;Ofer Harel - 通讯作者:
Ofer Harel
Ofer Harel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ofer Harel', 18)}}的其他基金
Collaborative Research: Shape-Based Imputation and Estimation of Fragmented, Noisy Curves with Application to the Reconstruction of Fossil Bovid Teeth
合作研究:基于形状的碎片、噪声曲线的插补和估计,应用于化石牛牙齿的重建
- 批准号:
2015320 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
- 批准号:
2327625 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant