New Methods and Theory of Statistical Inference for Non-Gaussian Graphical Models
非高斯图模型统计推断的新方法和理论
基本信息
- 批准号:1812030
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The undirected graphical model (GM), a powerful tool for investigating the relationship among a large number of random variables in a complex system, is used in a wide range of scientific applications, including image analysis, statistical physics, astrophysics, finance, and biomedical studies. With recent technological advances, unprecedented amounts of information can be collected for a given system, making meaningful inferential guarantees of GMs more challenging. Despite recent successes in development of methods and theory for Gaussian GMs, the underlying assumption of continuous and normally distributed data is violated for some important data types. For example, ordinal, binary and count data are all discrete in nature and cannot be naively transformed into Gaussian distributions. In biomedical studies, examples of non-Gaussian type data include DNA Copy Number Variation, mutation and (single cell) RNA-sequence data. Compared to recent advances in Gaussian GM, research in modeling and theoretical foundations for non-Gaussian data types has fallen behind. To bridge this gap, the PI will identify some of the major modeling and inferential challenges and propose several new graphical models for non-Gaussian data. In addition, the PI will further develop, evaluate and improve new statistical and computational inference methods for these models with theoretical guarantees. The proposed research will significantly advance fundamental theoretical understanding on modeling and statistical inference of non-Gaussian data in graphical models via three tasks. (I) Development of a new two-step inference procedure to employ the covariate-adjusted truncated Poisson graphical model (TPGM) which provides a unified framework for modeling both binary and count type data. The inferential procedure fully respects the intrinsic sparse structure of the graph making it more reliable. A novel likelihood-based non-linear score vector for bias correction will be developed. (II) A novel zero-inflated TPGM fully accounting for the zero-inflation pattern in the data is proposed to model single cell RNA sequence data at the cell level. The inferential procedure based on EM algorithms paves a road to better understanding of the genetic networks in different cell types, and thus a better understanding of the mechanisms of various diseases. Theoretically, a composite-likelihood-based EM algorithm is utilized to overcome computational difficulties. (III) Development of a novel latent semiparametric graphical model to draw inferences on intrinsic graph structure by integrating both ordinal and continuous type data. The method takes into account potential confounding effects to draw meaningful conclusions. Beyond fundamental advances in statistical modeling and theory of graphical models, the research will have immediate impact in applications from a number of scientific disciplines including biology, pharmacy, finance and genomics. The results will be disseminated through publications, open-source software and presentations at conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无向图形模型(GM)是研究复杂系统中大量随机变量之间关系的强大工具,被广泛用于科学应用,包括图像分析、统计物理、天体物理学、金融和生物医学研究。随着最近的技术进步,可以为给定系统收集前所未有的大量信息,这使得对gm进行有意义的推理保证更具挑战性。尽管最近在开发高斯gm的方法和理论方面取得了成功,但对于一些重要的数据类型,连续和正态分布数据的基本假设被违反了。例如,序数、二进制和计数数据本质上都是离散的,不能天真地转换为高斯分布。在生物医学研究中,非高斯型数据的例子包括DNA拷贝数变异、突变和(单细胞)rna序列数据。与高斯GM的最新进展相比,非高斯数据类型的建模和理论基础研究相对落后。为了弥补这一差距,PI将确定一些主要的建模和推理挑战,并为非高斯数据提出几个新的图形模型。此外,PI将进一步开发,评估和改进新的统计和计算推理方法,为这些模型提供理论保证。本研究将通过三个方面的工作,对图形模型中非高斯数据的建模和统计推断进行基础性的理论理解。(1)采用协变量调整截断泊松图模型(TPGM)开发了新的两步推理程序,该模型为二进制和计数型数据的建模提供了统一的框架。推理过程充分尊重图的固有稀疏结构,使其更加可靠。提出了一种基于似然的非线性偏差校正方法。(II)提出了一种新的零膨胀TPGM,充分考虑数据中的零膨胀模式,在细胞水平上模拟单细胞RNA序列数据。基于EM算法的推理程序为更好地理解不同细胞类型的遗传网络铺平了道路,从而更好地理解各种疾病的机制。理论上,基于复合似然的电磁算法克服了计算困难。(3)建立了一种新的潜在半参数图模型,通过对有序型和连续型数据进行积分来推断图的内在结构。该方法考虑了潜在的混杂效应,以得出有意义的结论。除了统计建模和图形模型理论方面的基本进展之外,这项研究将对包括生物学、药学、金融和基因组学在内的许多科学学科的应用产生直接影响。研究结果将通过出版物、开放源码软件和在会议上的演讲来传播。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Covariance-engaged Classification of Sets via Linear Programming
通过线性规划对集合进行协方差分类
- DOI:10.5705/ss.202020.0253
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Ren, Zhao;Jung, Sungkyu;Qiao, Xingye
- 通讯作者:Qiao, Xingye
Latent Dynamic Factor Analysis of High-Dimensional Neural Recordings
- DOI:
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Heejong Bong;Zongge Liu;V. Ventura
- 通讯作者:Heejong Bong;Zongge Liu;V. Ventura
User-Friendly Covariance Estimation for Heavy-Tailed Distributions
- DOI:10.1214/19-sts711
- 发表时间:2018-11
- 期刊:
- 影响因子:5.7
- 作者:Y. Ke;Stanislav Minsker;Zhao Ren;Qiang Sun;Wen-Xin Zhou
- 通讯作者:Y. Ke;Stanislav Minsker;Zhao Ren;Qiang Sun;Wen-Xin Zhou
Tuning-Free Heterogeneous Inference in Massive Networks
- DOI:10.1080/01621459.2018.1537920
- 发表时间:2019-04
- 期刊:
- 影响因子:3.7
- 作者:Zhao Ren;Yongjian Kang;Yingying Fan;Jinchi Lv
- 通讯作者:Zhao Ren;Yongjian Kang;Yingying Fan;Jinchi Lv
Minimax estimation of large precision matrices with bandable Cholesky factor
- DOI:10.1214/19-aos1893
- 发表时间:2017-12
- 期刊:
- 影响因子:0
- 作者:Yu Liu;Zhao Ren
- 通讯作者:Yu Liu;Zhao Ren
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhao Ren其他文献
Tunneling mechanism in higher-dimensional rotating black hole with a cosmological constant in the approach of dimensional reduction
降维方法中具有宇宙学常数的高维旋转黑洞中的隧道机制
- DOI:
10.1007/s10509-011-0660-7 - 发表时间:
2011-03 - 期刊:
- 影响因子:1.9
- 作者:
Zhang Li-Chun;Li Huai-Fan;Zhao Ren - 通讯作者:
Zhao Ren
A new explanation for statistical entropy of charged black hole
带电黑洞统计熵的新解释
- DOI:
10.1007/s11433-013-5167-5 - 发表时间:
2013-07 - 期刊:
- 影响因子:0
- 作者:
Zhao Ren;Zhang LiChun - 通讯作者:
Zhang LiChun
Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source
非线性源高维带电拓扑膨胀 AdS 黑洞中的克拉佩龙方程和相平衡性质
- DOI:
10.1140/epjc/s10052-017-4831-8 - 发表时间:
2016-09 - 期刊:
- 影响因子:4.4
- 作者:
Li Huai-Fan;Zhao Hui-Hua;Zhang Li-Chun;Zhao Ren - 通讯作者:
Zhao Ren
Quantum Statistical Entropy of Black Hole
黑洞的量子统计熵
- DOI:
10.1023/a:1021179316964 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Zhao Ren;Zhang Junfang;Zhang Lichun - 通讯作者:
Zhang Lichun
The EIHW-GLAM Deep Attentive Multi-model Fusion System for Cough-based COVID-19 Recognition in the DiCOVA 2021 Challenge
EIHW-GLAM 深度注意力多模型融合系统,用于 DiCOVA 2021 挑战赛中基于咳嗽的 COVID-19 识别
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhao Ren;Yi Chang;Björn Schuller - 通讯作者:
Björn Schuller
Zhao Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhao Ren', 18)}}的其他基金
New Frontiers of Robust Statistics in the Era of Big Data
大数据时代稳健统计的新领域
- 批准号:
2113568 - 财政年份:2021
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
- 批准号:
EP/Z000335/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
- 批准号:
10797410 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
A suite of new nonparametric methods for missing data and data from heterogeneous sources based on the theory of Frechet classes
基于 Frechet 类理论的一套新的用于缺失数据和异构源数据的非参数方法
- 批准号:
EP/W016117/1 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Investigating New Formulations of Adversary Methods in Quantum Complexity Theory
研究量子复杂性理论中对抗方法的新表述
- 批准号:
575593-2022 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
2243650 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Brown’s Spectral Measure: New Computational Methods from Stochastics, Partial Differential Equations, and Operator Theory
布朗谱测量:来自随机学、偏微分方程和算子理论的新计算方法
- 批准号:
2055340 - 财政年份:2021
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Automated Causal Discovery with Observational Data via Directed Graphical Models - New Theory and Methods
通过有向图形模型利用观测数据自动发现因果关系 - 新理论和方法
- 批准号:
2112943 - 财政年份:2021
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
New Development of Clustering Methods Considering Uncertainty Based on Rough Set Theory
基于粗糙集理论考虑不确定性的聚类方法新进展
- 批准号:
20K19886 - 财政年份:2020
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




