Automated Causal Discovery with Observational Data via Directed Graphical Models - New Theory and Methods

通过有向图形模型利用观测数据自动发现因果关系 - 新理论和方法

基本信息

  • 批准号:
    2112943
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Establishing causality is crucial in many fields of science including biology, psychology, neuroscience, climate science, robotics, and quantum mechanics. While the gold standard for establishing causality remains controlled experimentation, it can be expensive, unethical, and even impossible in many cases. Therefore, establishing causality from passively observed data (as opposed to experimental data) is often desirable and, sometimes, the only option. In this project, the PI will develop a series of causal discovery methods that are theoretically sound and practically useful for identifying causality with observational data. Efficient open-source software accompanying the proposed methods will be developed and the project also provides research training opportunities for graduate students. The proposed methods will be based on directed graphical models (DGMs). Despite the popularity of DGMs across disciplines, using DGMs to establish causality from observational data remains difficult, both theoretically and methodologically, due to several prominent challenges. First, DGMs are generally non-identifiable due to Markov equivalence class in which all DGMs encode the same set of conditional independencies and hence are not distinguishable from each other without further assumptions. Second, the class of DGMs is not closed under marginalization and therefore the structure learning can be misled by unmeasured confounders. Third, the vast majority of existing methods rely on relatively strong distributional assumptions on the data generating mechanism, which can cause significant estimation biases when the assumptions are seriously violated. This project aims to address these three challenges by developing new DGMs for non-iid data and establishing their causal identifiability theories in the presence of confounders and model misspecification. As validation, the proposed methods will be used to reverse engineer gene regulatory networks from genomic datasets. Results will be disseminated through workshops, publications, and new graduate courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建立因果关系在许多科学领域都至关重要,包括生物学、心理学、神经科学、气候科学、机器人技术和量子力学。虽然建立因果关系的黄金标准仍然是受控实验,但它可能是昂贵的,不道德的,甚至在许多情况下是不可能的。因此,从被动观察的数据(而不是实验数据)建立因果关系往往是可取的,有时也是唯一的选择。在这个项目中,PI将开发一系列因果发现方法,这些方法在理论上是合理的,在实际中对通过观测数据确定因果关系是有用的。将开发与拟议方法配套的高效开放源码软件,该项目还为研究生提供研究培训机会。所提出的方法将基于有向图模型(DGM)。尽管DGMs在各学科中很受欢迎,但由于一些突出的挑战,使用DGMs从观测数据中建立因果关系在理论上和方法上仍然很困难。首先,由于马尔可夫等价类,DGMs通常是不可识别的,其中所有DGMs编码相同的条件独立性集合,因此在没有进一步假设的情况下无法相互区分。第二,DGM类在边缘化下并不封闭,因此结构学习可能会被不可测量的混杂因素所误导。第三,绝大多数现有的方法依赖于相对较强的分布假设的数据生成机制,这可能会导致重大的估计偏差时,严重违反假设。该项目旨在通过开发新的非iid数据的DGMs,并在存在混杂因素和模型错误指定的情况下建立其因果可识别性理论来解决这三个挑战。作为验证,所提出的方法将用于从基因组数据集反向工程基因调控网络。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Federated Learning for Sparse Bayesian Models with Applications to Electronic Health Records and Genomics
稀疏贝叶斯模型的联合学习及其在电子健康记录和基因组学中的应用
Causal discovery with heterogeneous observational data
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fangting Zhou;Kejun He;Yang Ni
  • 通讯作者:
    Fangting Zhou;Kejun He;Yang Ni
A Unified Bayesian Framework for Biclustering Multi-Omic Data via Sparse Matrix Factorization
通过稀疏矩阵分解对多组学数据进行双聚类的统一贝叶斯框架
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Zhou, F.;He, K.;Cai, J.;Davidson, L.;Chapkin, R.;Ni, Y.
  • 通讯作者:
    Ni, Y.
Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure.
  • DOI:
    pii: https://www.jmlr.org/papers/v23/21-0102.html
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ni Y;Stingo FC;Baladandayuthapani V
  • 通讯作者:
    Baladandayuthapani V
Ordinal causal discovery
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Ni;B. Mallick
  • 通讯作者:
    Yang Ni;B. Mallick
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yang Ni其他文献

The life expectancy benefits on respiratory diseases gained by reducing the daily concentration of particulate matter to attain different air quality standard targets: findings from a 5-year time-series study in Tianjin, China
通过降低每日颗粒物浓度以达到不同的空气质量标准目标,对呼吸系统疾病的预期寿命有好处:中国天津五年时间序列研究的结果
Kicking the tires of software transactional memory: why the going gets tough
软件事务内存的疲劳:为什么事情会变得艰难
Supplementary Material for “Bayesian Graphical Regression”
“贝叶斯图形回归”的补充材料
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Ni;F. Stingo;Veerabhadran;Baladandayuthapani
  • 通讯作者:
    Baladandayuthapani
Protein Kinase D 1 mediates Class IIa Histone Deacetylase Phosphorylation and 1 Nuclear Extrusion in Intestinal Epithelial Cells : Role in Mitogenic Signaling 2 3
蛋白激酶 D 1 介导 IIa 类组蛋白脱乙酰酶磷酸化和 1 肠上皮细胞中的核挤出:在有丝分裂信号传导中的作用 2 3
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Sinnett;Yang Ni;J. Wang;M. Ming;S. H. Young;E. Rozengurt
  • 通讯作者:
    E. Rozengurt
Scalar-Function Causal Discovery for Generating Causal Hypotheses with Observational Wearable Device Data
使用观测可穿戴设备数据生成因果假设的标量函数因果发现

Yang Ni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yang Ni', 18)}}的其他基金

CBMS Conference: Foundations of Causal Graphical Models and Structure Discovery
CBMS 会议:因果图模型和结构发现的基础
  • 批准号:
    2227849
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: New Bayesian Methods for Modeling the Effect of Antiretroviral Drugs on Depressive Symptomatology in HIV patients
合作研究:用于模拟抗逆转录病毒药物对艾滋病毒患者抑郁症状影响的新贝叶斯方法
  • 批准号:
    1918851
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

AI-Powered Uncovering of Mechanisms in Cancer Through Causal Discovery Analysis and Generative Modeling of Heterogeneous Data
人工智能通过因果发现分析和异构数据生成模型揭示癌症机制
  • 批准号:
    10581180
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
CBMS Conference: Foundations of Causal Graphical Models and Structure Discovery
CBMS 会议:因果图模型和结构发现的基础
  • 批准号:
    2227849
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Bayesian causal learning: A novel framework for drug-target discovery using Mendelian randomization on single-cell transcriptomics
贝叶斯因果学习:在单细胞转录组学上使用孟德尔随机化的药物靶点发现的新框架
  • 批准号:
    MR/W029790/1
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Bayesian Methods for Causal Discovery
因果发现的贝叶斯方法
  • 批准号:
    2902186
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Causal Discovery from Unstructured Data
从非结构化数据中发现因果关系
  • 批准号:
    DE210101624
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Early Career Researcher Award
Causal discovery from data in the presence of unobserved common causes
在存在未观察到的常见原因的情况下从数据中发现因果关系
  • 批准号:
    20K19872
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding the Impact of Opioid Policies on the Opioid Epidemic Using Graphical Causal Models and Causal Discovery
使用图形因果模型和因果发现了解阿片类药物政策对阿片类药物流行的影响
  • 批准号:
    9975979
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
Understanding the Impact of Opioid Policies on the Opioid Epidemic Using Graphical Causal Models and Causal Discovery
使用图形因果模型和因果发现了解阿片类药物政策对阿片类药物流行的影响
  • 批准号:
    10186725
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
Epigenome-Guided Causal Variant Discovery and Mechanisms
表观基因组引导的因果变异发现和机制
  • 批准号:
    10158442
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
Models of Complex Experimentation: Attribute Discovery, Contextual Experimentation, and Experimentation on Causal Graphs
复杂实验模型:属性发现、上下文实验和因果图实验
  • 批准号:
    1919329
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了