Regression with Time Series Regressors
使用时间序列回归器进行回归
基本信息
- 批准号:1812054
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The projects to be investigated are motivated by the following two different problems. It is well known that sea ice in the Arctic is receding. Changes in climate are thought to be a contributing factor. Therefore, it is important to understand if, when, and how daily temperatures in the Arctic region are impacting sea ice. The second motivation comes from neuroscience. Is it possible to predict the decision a person makes based on biometric and neurophysiological responses, such as eye dilation observed over time or an EEG? The objectives in both examples are very different, however they are bound by a common theme; to understand how data observed over time (usually called a time series) affects an outcome of interest. These problems fall under the canopy of regression (a broad topic in statistics), which is a widely researched area in statistics. However, what distinguishes these problems from the classical regression framework is that the regressors have a well-defined structure, which is rarely exploited in most classical regression techniques. By modelling the time series, methods will be developed that exploit the structure of the time series. This will facilitate estimation in models that otherwise would not be possible. The approach will be used to identify salient periods in the time series that have the greatest impact on the outcome and can be used to physically interpret the data. In recent years, there has been a growing number of data sets, from a wide spectrum of applications ranging from the neurosciences to the geosciences, where an outcome is observed together with a time series that is believed to influence the outcome. Despite the clear need in applications, there exists surprisingly few results that exploit the properties of a time series in the prediction of outcomes. This project will bridge this gap by developing regression methods that utilize the fact that the regressors are a time series or are spatially dependent. To achieve these aims, many new statistical methods will be developed. In signal processing, deconvolution methods are often used to estimate the parameters of a two-sided linear filter. This is because the deconvolution is computationally very fast to implement. However, there has been very little exploration on the use of deconvolution methods within the framework of estimating regression parameters. This project will develop deconvolution techniques for (i) linear regression models, and (ii) generalized linear models and when the regressors are stationary and locally stationary. The focus will be on the realistic situation where the time series or spatial data is far larger than the number of responses. Besides the computational simplicity of deconvolution, by isolating the Fourier transform of the regression coefficients, diagnostic tools to understand the nature of the underlying regression coefficients will be developed. For example, the methods can tell whether the coefficients are smooth, contain periodicities, or are sparse. The project will develop inferential methods for parameter estimators that allow for uncertainty quantification, construction of confidence intervals, and tests for linear dependence. Included is a new technique for estimating the variance of the regression coefficients.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
要调查的项目是由以下两个不同的问题引起的。 众所周知,北极的海冰正在消退。气候变化被认为是一个促成因素。 因此,重要的是要了解北极地区的每日温度是否、何时以及如何影响海冰。 第二个动机来自神经科学。是否有可能根据生物特征和神经生理反应(例如随着时间的推移观察到的眼睛扩张或EEG)来预测一个人做出的决定?这两个例子的目标非常不同,但它们都有一个共同的主题:了解随着时间的推移观察到的数据(通常称为时间序列)如何影响感兴趣的结果。这些问题属于回归(统计学中的一个广泛主题)的范畴,这是统计学中广泛研究的领域。然而,这些问题与经典回归框架的区别在于回归变量具有定义良好的结构,这在大多数经典回归技术中很少被利用。通过对时间序列建模,将开发利用时间序列结构的方法。这将有助于在模型中进行估计,否则是不可能的。该方法将用于确定时间序列中对结果影响最大的突出时期,并可用于对数据进行物理解释。近年来,有越来越多的数据集,从神经科学到地球科学的广泛应用,其中结果与被认为会影响结果的时间序列一起观察。 尽管在应用中有明确的需求,但令人惊讶的是,很少有结果利用时间序列的属性来预测结果。该项目将通过开发回归方法来弥补这一差距,该方法利用回归量是时间序列或空间依赖性这一事实。 为了实现这些目标,将开发许多新的统计方法。在信号处理中,反卷积方法经常被用来估计双边线性滤波器的参数。这是因为去卷积在计算上实现起来非常快。然而,在估计回归参数的框架内,对使用反卷积方法的探索很少。本项目将为(i)线性回归模型和(ii)广义线性模型以及回归量平稳和局部平稳时开发反卷积技术。重点将放在时间序列或空间数据远远大于答复数量的现实情况上。 除了反卷积的计算简单性之外,通过隔离回归系数的傅里叶变换,将开发诊断工具来理解潜在回归系数的性质。例如,这些方法可以判断系数是否平滑、包含周期性或稀疏。 该项目将开发参数估计的推理方法,允许不确定性量化,置信区间的构建和线性相关性的测试。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suhasini Subba Rao其他文献
A Course in Time Series Analysis
- DOI:
10.1198/tech.2001.s67 - 发表时间:
2001-11 - 期刊:
- 影响因子:2.5
- 作者:
Suhasini Subba Rao - 通讯作者:
Suhasini Subba Rao
Suhasini Subba Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suhasini Subba Rao', 18)}}的其他基金
Collaborative Research: Learning Graphical Models for Nonstationary Time Series
协作研究:学习非平稳时间序列的图形模型
- 批准号:
2210726 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Studies on Signals and Images via the Fourier Transform
通过傅里叶变换研究信号和图像
- 批准号:
1513647 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Fourier Methods in the Analysis of nonstationary and nonlinear stochastic processes
非平稳和非线性随机过程分析中的傅里叶方法
- 批准号:
1106518 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Beyond Stationarity: Statistical Inference for Nonstationary Processes
超越平稳性:非平稳过程的统计推断
- 批准号:
0806096 - 财政年份:2008
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring Signal Detection via Multitaper Transfer Function Estimates: Extension to a Generalized Framework of Time Series Regression Models and Applications
通过多锥度传递函数估计探索信号检测:扩展到时间序列回归模型和应用的通用框架
- 批准号:
570341-2022 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Statistical analysis on moisture fluctuation and steel bar corrosion rate in carbonated concrete based on time-series regression
基于时间序列回归的碳化混凝土水分波动与钢筋腐蚀率统计分析
- 批准号:
20K14880 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
An Estimating Equation Approach to Count Time Series Regression
计算时间序列回归的估计方程方法
- 批准号:
510698-2017 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
University Undergraduate Student Research Awards
Time Series and Spectral Methods for Imputation, Regression, and Environmental Health
用于插补、回归和环境健康的时间序列和谱方法
- 批准号:
RGPIN-2017-04741 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Geostatistical software for spatial and multi-dimensional joinpoint regression analysis of time series of health outcomes
用于健康结果时间序列的空间和多维连接点回归分析的地统计软件
- 批准号:
9047005 - 财政年份:2016
- 资助金额:
$ 12万 - 项目类别: