Beyond Stationarity: Statistical Inference for Nonstationary Processes

超越平稳性:非平稳过程的统计推断

基本信息

  • 批准号:
    0806096
  • 负责人:
  • 金额:
    $ 11.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The investigator develops new methods for analysing nonstationary time series and their properties. Many methods in time series are developed under the premise that the observations are stationary. This assumption simplifies both the estimation procedure and asymptotic analysis. However, in real life this assumption is often quite unrealistic. Ignoring nonstationarity in the data and treating the observations as if they were stationary, could give misleading conclusions. Therefore it is important to develop methods for dealing with data that is either temporally or spatially nonstationary. The investigator focuses on three areas where, in applications, nonstationarity can arise (i) statistical inference for time-varying ARCH-type processes (ii) nonstationary random correlated (stochastic) coefficient regression models (iii) analysis of spatially nonstationary spatio-temporal models. These are summarised below. The investigator develops methods which test or track structural changes in time-varying ARCH and GARCH processes. In order to develop sampling properties for the proposed methods, mixing of the time-varying ARCH-type processes is required, and the investigator studies the mixing properties of such processes. Random correlated coefficient regression (RCCR) models are often used to explain the nonstationarity seen in the data. Despite its advantages, until recently the statistical analysis of RCCR models has been quite limited. The investigator develops statistical sound and computationally efficient parameter estimation methods for RCCR models. Observations from spatio-temporal processes can arise frequently in several disciplines, and several factors could cause the observations to come from a spatially nonstationary process. The investigator investigates spatially nonstationary, spatio-temporal processes. In particular, the investigator considers methods which decompose estimates of the model into a global spatially stationary process, and an additional locally nonstationary term. In several disciplines, it is assumed that the main character of data observed over time (usually known as a time series), for example volatility, is not influenced by time. This time invariance property is known as stationarity and it is often the underlying assumption in many current statistical methodologies, because stationarity can often simplify the analysis. However, statistical methods which overlook the nonstationarity can lead to misleading or incorrect conclusions. There are several real data examples where there is empirical evidence to suggest that stationarity is an oversimplification. A particularly pertinent example is global temperature anomolies, where there is plenty of evidence to suggest that both the average temperature and the variation have changed over the past 150 years. In this project we develop statistical methods for nonstationary time series, in particular to identify where changes have occured and factors which have caused the changes. By developing methods that do not ignore the nonstationarity, we are better able to understand the mechanisms driving the data, which leads to better forecasts. These methods can be applied a wide range of subjects, including economics (identifying factors behind the current credit crunch) and climatology (test whether the rise in CO2 levels, has an influence on the amount of variation in the global temperatures).
研究者开发了分析非平稳时间序列及其性质的新方法。时间序列分析中的许多方法都是在观测值平稳的前提下发展起来的。这个假设简化了估计过程和渐近分析。然而,在真实的生活中,这种假设往往是相当不切实际的。忽略数据中的非平稳性并将观测值视为平稳的,可能会得出误导性的结论。因此,它是重要的,以发展的方法来处理数据,无论是时间或空间上的非平稳。调查人员集中在三个领域,在应用中,非平稳性可能会出现(i)时变ARCH型过程的统计推断(ii)非平稳随机相关(随机)系数回归模型(iii)空间非平稳时空模型的分析。现将其概述如下。研究人员开发的方法,测试或跟踪结构变化的时间变化的β-内酰胺酶和甘氨酰化过程。为了开发所提出的方法的采样特性,混合的时变的ARCH型过程是必需的,和调查员研究的混合特性,这样的过程。随机相关系数回归(RCCR)模型通常用于解释数据中的非平稳性。尽管RCCR模型有其优点,但直到最近,对RCCR模型的统计分析仍然非常有限。研究者为RCCR模型开发了统计上合理和计算上有效的参数估计方法。时空过程的观测在多个学科中经常出现,有多种因素可能导致观测来自空间非平稳过程。调查员调查空间非平稳,时空过程。特别是,调查人员认为,分解成一个全球空间平稳过程的模型估计的方法,和一个额外的局部非平稳项。 在一些学科中,假设随着时间的推移观察到的数据(通常称为时间序列)的主要特征,例如波动性,不受时间的影响。这种时间不变性被称为平稳性,它通常是当前许多统计方法的基本假设,因为平稳性通常可以简化分析。然而,忽略非平稳性的统计方法可能导致误导或不正确的结论。有几个真实的数据例子,其中有经验证据表明平稳性是一种过度简化。一个特别相关的例子是全球温度异常,有大量证据表明,在过去150年中,平均温度和变化都发生了变化。在这个项目中,我们开发了非平稳时间序列的统计方法,特别是识别发生变化的地方和导致变化的因素。通过开发不忽视非平稳性的方法,我们能够更好地理解驱动数据的机制,从而实现更好的预测。这些方法可以应用于广泛的主题,包括经济学(确定当前信贷紧缩背后的因素)和气候学(测试二氧化碳水平的上升是否会影响全球温度的变化量)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suhasini Subba Rao其他文献

A Course in Time Series Analysis
  • DOI:
    10.1198/tech.2001.s67
  • 发表时间:
    2001-11
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Suhasini Subba Rao
  • 通讯作者:
    Suhasini Subba Rao

Suhasini Subba Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suhasini Subba Rao', 18)}}的其他基金

Collaborative Research: Learning Graphical Models for Nonstationary Time Series
协作研究:学习非平稳时间序列的图形模型
  • 批准号:
    2210726
  • 财政年份:
    2022
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Standard Grant
Regression with Time Series Regressors
使用时间序列回归器进行回归
  • 批准号:
    1812054
  • 财政年份:
    2018
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Continuing Grant
Studies on Signals and Images via the Fourier Transform
通过傅里叶变换研究信号和图像
  • 批准号:
    1513647
  • 财政年份:
    2015
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Standard Grant
Fourier Methods in the Analysis of nonstationary and nonlinear stochastic processes
非平稳和非线性随机过程分析中的傅里叶方法
  • 批准号:
    1106518
  • 财政年份:
    2011
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Standard Grant

相似海外基金

Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPIN-2021-02715
  • 财政年份:
    2022
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2022
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Improving Understanding of Non-Equilibrium Surface-Layer Stress-Strain-Rate Relationships Using a Novel Stationarity-Analysis Technique and Large-Eddy Simulation
使用新颖的平稳性分析技术和大涡模拟提高对非平衡表面层应力-应变-速率关系的理解
  • 批准号:
    2113854
  • 财政年份:
    2021
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Standard Grant
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPAS-2021-00036
  • 财政年份:
    2021
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Statistical Inference for Complex Temporal Systems: Non-stationarity, High Dimensionality And Beyond.
复杂时态系统的统计推断:非平稳性、高维性及其他。
  • 批准号:
    RGPIN-2021-02715
  • 财政年份:
    2021
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Discovery Grants Program - Individual
Anisotropy and non-stationarity in statistical learning, and its influence on the convergence of function approximation
统计学习中的各向异性和非平稳性及其对函数逼近收敛性的影响
  • 批准号:
    2436448
  • 财政年份:
    2020
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Studentship
Non-stationarity of teleconnections in the climate system
气候系统中遥相关的非平稳性
  • 批准号:
    2278798
  • 财政年份:
    2019
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Studentship
CNS Core: Medium: Collaborative: Exploring and Exploiting Learning for Efficient Network Control: Non-Stationarity, Inter-Dependence, and Domain-Knowledge
CNS 核心:中:协作:探索和利用学习实现高效网络控制:非平稳性、相互依赖和领域知识
  • 批准号:
    1901218
  • 财政年份:
    2019
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Collaborative: Exploring and Exploiting Learning for Efficient Network Control: Non-Stationarity, Inter-Dependence, and Domain-Knowledge
CNS 核心:中:协作:探索和利用学习实现高效网络控制:非平稳性、相互依赖和领域知识
  • 批准号:
    1901057
  • 财政年份:
    2019
  • 资助金额:
    $ 11.55万
  • 项目类别:
    Standard Grant
Markov chains - stability and (quasi)stationarity
马尔可夫链 - 稳定性和(准)平稳性
  • 批准号:
    541582-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 11.55万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了