Geostatistical software for spatial and multi-dimensional joinpoint regression analysis of time series of health outcomes
用于健康结果时间序列的空间和多维连接点回归分析的地统计软件
基本信息
- 批准号:9047005
- 负责人:
- 金额:$ 20.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AmericanCancer BurdenCancer ControlCancer Surveillance Research ProgramCaringCessation of lifeCluster AnalysisCodeComputer softwareCongressesCountyCrimeData AggregationData AnalysesDevelopmentDiagnosisEconomic BurdenEvaluationFishesFloridaFutureGrowthHealthHealth SciencesHealth Services ResearchImageryIncidenceIndividualInformation SystemsInternationalInterventionKnowledgeMalignant NeoplasmsMalignant neoplasm of prostateMapsMarketingMethodologyMethodsModelingNoiseOnline SystemsOutcomePaperPatternPeer ReviewPhasePolicy MakerPopulationPreventionProcessProtocols documentationPublic HealthPublicationsRaceRegression AnalysisResearchScanningSeriesSmall Business Innovation Research GrantStagingTechniquesTechnologyTestingTimeTime Series AnalysisUnited States National Institutes of HealthVariantWeightaging populationbaseburden of illnesscancer diagnosiscancer epidemiologyclimate changecostdesigndimensional analysisdisparity reductionhealth dataimprovedinnovationinsightmortalityneoplasm registrynovelprototypepublic health relevancesimulationstatisticssymposiumtheoriestooltrendtrend analysisusabilityuser-friendlyworking group
项目摘要
DESCRIPTION (provided by applicant): Analyzing temporal trends in cancer incidence and mortality rates can provide a more comprehensive picture of the burden of the disease and generate new insights about the impact of various interventions. Join point regression developed by NCI Surveillance Research Program is increasingly used to identify the timing and extent of changes in time series of health outcomes and to project future cancer burden through the prediction of the future number of new cancer cases or deaths. The analysis of temporal trends outside a spatial framework is however unsatisfactory, since it has long been recognized that there is significant variation among U.S. counties and states with regard to the incidence of cancer. It is thus critical to implement join point regression within Geographical Information Systems (GIS), and develop interfaces offering user-friendly tools for pre-processing, modeling, visualizing and summarizing large ensembles of time series of health outcomes. This SBIR project is developing the first commercial software to offer tools for the geostatistical modeling and join point regression analysis of time series of health outcomes. The research product will be a stand-alone module into the desktop space-time visualization core developed by BioMedware, an Esri partner. This software package will provide a comprehensive suite for: 1) the computation and geostatistical noise-filtering (kriging) of time series of health outcomes at various spatial scales (e.g. ZIP codes, counties), 2) the visualization of how the parameters of the regression model (e.g. join point years, Average Annual Percent Change) change in space and across spatial scales, and 3) the analysis of similarities among time series and their aggregation through multi-dimensional scaling and clustering analysis. These tools will be suited for the analysis of data outside health sciences, such as in crime mapping, fish stock assessment or climate change, broadening significantly the commercial market for the end product. This project will accomplish three aims: Conduct simulation-based studies to assess the benefits of: 1) the application of join point regression to smoothed time series (kriging-based
and Bayesian filters) for identifying temporal trends from unstable rates recorded in small geographical units, 2) multi-dimensional scaling to visualize differences among ensemble of time series, and 3) clustering analysis to group geographical units with similar temporal trend. Develop and test a prototype module that will guide users through the creation, join point regression modeling, visualization and multi-dimensional analysis of time series of health outcomes, based on BioMedware's space-time visualization and analysis technology. Conduct a usability study and identify additional methods and tools to consider in Phase II. These technologic, scientific and commercial innovations will revolutionize our ability to detect changes in cancer incidence and mortality across space and through time, bringing important information and knowledge that will benefit substantially cancer epidemiology, control and surveillance and help reducing these disparities.
描述(由申请人提供):分析癌症发病率和死亡率的时间趋势可以更全面地了解疾病负担,并对各种干预措施的影响产生新的见解。NCI监测研究计划开发的连接点回归越来越多地用于确定健康结果时间序列变化的时间和程度,并通过预测未来新发癌症病例或死亡人数来预测未来癌症负担。然而,在空间框架之外对时间趋势的分析并不令人满意,因为人们早就认识到,美国各县和各州之间在癌症发病率方面存在显着差异。因此,必须在地理信息系统中实施连接点回归,并开发界面,提供用户友好的工具,用于预处理、建模、可视化和总结大量健康结果时间序列。该SBIR项目正在开发第一个商业软件,为健康结果时间序列的地统计建模和连接点回归分析提供工具。该研究产品将是由Esri合作伙伴BioMedware开发的桌面时空可视化核心的独立模块。该软件包将提供一个全面的套件,用于:1)在不同空间尺度上对健康结果的时间序列进行计算和地质统计噪声过滤(克里金法)(例如邮政编码,县),2)如何回归模型的参数的可视化(例如,连接点年、平均年百分比变化)空间和跨空间尺度的变化,(3)通过多维标度和聚类分析,分析时间序列之间的相似性及其聚合性。这些工具将适用于分析健康科学以外的数据,如犯罪绘图、鱼类资源评估或气候变化,从而大大拓宽最终产品的商业市场。该项目将实现三个目标:1)进行基于模拟的研究,以评估以下方面的好处:1)将连接点回归应用于平滑时间序列(基于克里金法)
和贝叶斯滤波器),用于从小地理单元中记录的不稳定速率中识别时间趋势,2)多维缩放以可视化时间序列集合之间的差异,以及3)聚类分析以将具有相似时间趋势的地理单元分组。 基于BioMedware的时空可视化和分析技术,开发并测试一个原型模块,该模块将指导用户完成健康结果时间序列的创建、连接点回归建模、可视化和多维分析。进行可用性研究,并确定在第二阶段考虑的其他方法和工具。这些技术、科学和商业创新将彻底改变我们检测癌症发病率和死亡率在空间和时间上的变化的能力,带来重要的信息和知识,将大大有利于癌症流行病学、控制和监测,并有助于缩小这些差距。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias?
- DOI:10.1016/j.scitotenv.2017.02.183
- 发表时间:2017-07-15
- 期刊:
- 影响因子:9.8
- 作者:Goovaerts, Pierre
- 通讯作者:Goovaerts, Pierre
The drinking water contamination crisis in Flint: Modeling temporal trends of lead level since returning to Detroit water system.
弗林特的饮用水污染危机:对返回底特律供水系统后铅含量的时间趋势进行建模。
- DOI:10.1016/j.scitotenv.2016.09.207
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Goovaerts,Pierre
- 通讯作者:Goovaerts,Pierre
How geostatistics can help you find lead and galvanized water service lines: The case of Flint, MI.
地质统计学如何帮助您找到铅和镀锌供水管道:以密歇根州弗林特为例。
- DOI:10.1016/j.scitotenv.2017.05.094
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Goovaerts,Pierre
- 通讯作者:Goovaerts,Pierre
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PIERRE E GOOVAERTS其他文献
PIERRE E GOOVAERTS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PIERRE E GOOVAERTS', 18)}}的其他基金
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
- 批准号:
10697081 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10468323 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10006357 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for merging multivariate data with various spatial supports
用于将多元数据与各种空间支持合并的地统计软件
- 批准号:
10323718 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for space-time interpolation and uncertainty modeling
用于时空插值和不确定性建模的地统计软件
- 批准号:
9138888 - 财政年份:2013
- 资助金额:
$ 20.46万 - 项目类别:
Geostatistical software for space-time interpolation and uncertainty modeling
用于时空插值和不确定性建模的地统计软件
- 批准号:
8523583 - 财政年份:2013
- 资助金额:
$ 20.46万 - 项目类别:
A geostatistical framework for the multi-scale boundary analysis of space-time tr
时空TR多尺度边界分析的地统计框架
- 批准号:
8588323 - 财政年份:2012
- 资助金额:
$ 20.46万 - 项目类别:
A geostatistical framework for the multi-scale boundary analysis of space-time tr
时空TR多尺度边界分析的地统计框架
- 批准号:
8444188 - 财政年份:2012
- 资助金额:
$ 20.46万 - 项目类别:
Three-dimensional visualization, interactive analysis and contextual mapping of s
三维可视化、交互式分析和上下文映射
- 批准号:
7908050 - 财政年份:2010
- 资助金额:
$ 20.46万 - 项目类别:
SBIR PHASE II- TOPIC 234- AUTOMATED PATTERN RECOGNITION IN SATELLITE IMAGERY
SBIR 第二阶段 - 主题 234 - 卫星图像中的自动模式识别
- 批准号:
7952599 - 财政年份:2009
- 资助金额:
$ 20.46万 - 项目类别:
相似海外基金
Characterizing Breast and Cervical Cancer Burden Among Sexual Minority women
性少数女性乳腺癌和宫颈癌负担的特征
- 批准号:
10739450 - 财政年份:2023
- 资助金额:
$ 20.46万 - 项目类别:
An mHealth Positive Psychology Intervention to Reduce Cancer Burden in Young Adult Cancer Survivors
移动医疗积极心理干预可减少年轻成年癌症幸存者的癌症负担
- 批准号:
10684909 - 财政年份:2022
- 资助金额:
$ 20.46万 - 项目类别:
An mHealth Positive Psychology Intervention to Reduce Cancer Burden in Young Adult Cancer Survivors
移动医疗积极心理干预可减少年轻成年癌症幸存者的癌症负担
- 批准号:
10458257 - 财政年份:2022
- 资助金额:
$ 20.46万 - 项目类别:
Colorado's Partnership to Implement Evidence-Based Interventions to Reduce the Cancer Burden
科罗拉多州合作实施循证干预措施以减少癌症负担
- 批准号:
10409393 - 财政年份:2021
- 资助金额:
$ 20.46万 - 项目类别:
Reducing Colorectal Cancer Burden in Young Adults: Precision Prevention and Early Detection
减少年轻人结直肠癌负担:精准预防和早期发现
- 批准号:
nhmrc : 1194392 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Investigator Grants
Using Electronic Health Records from a Large Clinical Data Research Network to Understand Cancer Burden and Cancer Risks Among Transgender and Gender Nonconforming (TGNC) Individuals
使用来自大型临床数据研究网络的电子健康记录来了解跨性别者和性别不合格 (TGNC) 个体的癌症负担和癌症风险
- 批准号:
10056679 - 财政年份:2020
- 资助金额:
$ 20.46万 - 项目类别:
Addressing the Cancer Burden in South America and the US Hispanic and Native American Populations through Clinical Trials
通过临床试验解决南美洲以及美国西班牙裔和美洲原住民人口的癌症负担
- 批准号:
9759602 - 财政年份:2019
- 资助金额:
$ 20.46万 - 项目类别:
Cancer Burden attributable to non-modifiable factors in Japan
日本的癌症负担归因于不可改变的因素
- 批准号:
19H03913 - 财政年份:2019
- 资助金额:
$ 20.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Link, monitor, strategize: First Nations, Inuit, Métis peoples' cancer burden in Canada
联系、监测、制定战略:加拿大原住民、因纽特人、梅蒂斯人的癌症负担
- 批准号:
391658 - 财政年份:2018
- 资助金额:
$ 20.46万 - 项目类别:
Operating Grants
Understanding cancer burden and outcomes for Canadians living with intellectual and developmental disabilities
了解患有智力和发育障碍的加拿大人的癌症负担和结果
- 批准号:
389200 - 财政年份:2018
- 资助金额:
$ 20.46万 - 项目类别:
Operating Grants