Modeling Temporal Dynamics of Large Systems from High-Dimensional Time Series Data

根据高维时间序列数据对大型系统的时间动态进行建模

基本信息

  • 批准号:
    1812128
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The answers to many questions in the biological and social sciences require understanding how the components of a large system dynamically interact with each other and give rise to emergent behavior. For instance, simultaneous failure of a handful of small but highly-connected firms can lead to huge systemic losses in the financial system. Interactions among neurophysiological signals in different brain regions relate to the organization of human brain connectome. This project aims to develop rigorous and computationally efficient statistical methods to jointly model the temporal dynamics of such large systems using high-dimensional time series datasets. These methods will enable researchers to gain deeper insights into the structure of these systems and help with more accurate data-driven decision making. It is anticipated that the methods under development can be used in clinical neuroscience to search for functional connectivity patterns associated with neurological disorders, and in financial regulation for monitoring systemic risk and identifying systemically important firms in the financial systems.Specifically, this project will focus on two classes of estimation and inference problems in high-dimensional time series: (i) developing novel theory and methods for estimating high-dimensional spectral density and coherence matrices, which can be viewed as a natural generalization of covariance and correlation matrix estimation problems to high-dimensional time series, and (ii) developing novel theoretical machinery to quantify uncertainty (confidence intervals and hypothesis tests) in high-dimensional vector autoregressive models. Broadly speaking, the research will attempt to bridge a gap between current frontiers of high-dimensional statistics for independent data and time series data using tools from disciplines including optimization, statistics, signal processing, and random matrix theory. This intellectual unification of ideas may provide novel insights in deciphering the workings of complex systems in a data-driven fashion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
要回答生物科学和社会科学中的许多问题,就需要了解一个大系统的组成部分是如何动态地相互作用并产生涌现行为的。例如,少数规模小但关系密切的公司同时倒闭可能会导致金融体系遭受巨大的系统性损失。不同脑区神经生理信号之间的相互作用关系到人脑连接体的组织结构。该项目旨在开发严格和计算效率高的统计方法,以使用高维时间序列数据集联合建模这种大型系统的时间动态。这些方法将使研究人员能够更深入地了解这些系统的结构,并帮助进行更准确的数据驱动决策。预计开发中的方法可用于临床神经科学,以搜索与神经系统疾病相关的功能连接模式,并用于金融监管,以监控系统风险并识别金融系统中的系统重要性公司。具体而言,本项目将专注于高维时间序列中的两类估计和推理问题:(i)开发用于估计高维谱密度和相干矩阵的新理论和方法,其可被视为协方差和相关矩阵估计问题对高维时间序列的自然推广,以及(ii)开发新的理论机制来量化高维向量自回归模型中的不确定性(置信区间和假设检验)。从广义上讲,这项研究将试图弥合当前独立数据和时间序列数据的高维统计前沿之间的差距,使用包括优化,统计,信号处理和随机矩阵理论在内的学科工具。这种思想上的统一可能会为以数据驱动的方式破译复杂系统的运作提供新的见解。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Review of Statistical Approaches for Modeling High-Frequency Trading Data
  • DOI:
    10.1007/s13571-022-00280-7
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chiranjit Dutta;Kara Karpman;Sumanta Basu;N. Ravishanker
  • 通讯作者:
    Chiranjit Dutta;Kara Karpman;Sumanta Basu;N. Ravishanker
Low Rank and Structured Modeling of High-Dimensional Vector Autoregressions
  • DOI:
    10.1109/tsp.2018.2887401
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Basu, Sumanta;Li, Xianqi;Michailidis, George
  • 通讯作者:
    Michailidis, George
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sumanta Basu其他文献

Interpretable vector autoregressions with exogenous time series
具有外源时间序列的可解释向量自回归
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Wilms;Sumanta Basu;J. Bien;D. Matteson
  • 通讯作者:
    D. Matteson
External Crisis Prediction Using Machine Learning: Evidence from Three Decades of Crises Around the World1
使用机器学习预测外部危机:来自世界各地三十年危机的证据1
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sumanta Basu;Roberto A. Perrelli
  • 通讯作者:
    Roberto A. Perrelli
A fast tabu search implementation for large asymmetric traveling salesman problems defined on sparse graphs
稀疏图上定义的大型非对称旅行商问题的快速禁忌搜索实现
High-Dimensional Estimation, Basis Assets, and the Adaptive Multi-Factor Model
高维估计、基础资产和自适应多因素模型
A Conceptual Model for the Integrated Policy Framework
综合政策框架的概念模型

Sumanta Basu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sumanta Basu', 18)}}的其他基金

CAREER: Structure Learning and Forecasting of Large-Scale Time Series
职业:大规模时间序列的结构学习和预测
  • 批准号:
    2239102
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Learning Graphical Models for Nonstationary Time Series
协作研究:学习非平稳时间序列的图形模型
  • 批准号:
    2210675
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant

相似海外基金

Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
  • 批准号:
    10568586
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
Elucidating spatial-temporal tritium-tracer dynamics in Fukushima headwater c atchments by field observation and modeling
通过现场观测和建模阐明福岛源头流域的时空氚示踪动态
  • 批准号:
    23K11446
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
  • 批准号:
    10662098
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
Modeling of spatio-temporal dynamics of neuropil signals and its application to automatic cell detectors
神经纤维信号时空动力学建模及其在自动细胞检测器中的应用
  • 批准号:
    19H04203
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Modeling the Spatial and Temporal Dynamics of Vector-borne Diseases in Florida: The Case of Zika Outbreak in 2016
合作研究:佛罗里达州媒介传播疾病的时空动态建模:以 2016 年寨卡病毒爆发为例
  • 批准号:
    1853562
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling the Spatial and Temporal Dynamics of Vector-borne Diseases in Florida: The Case of Zika Outbreak in 2016
合作研究:佛罗里达州媒介传播疾病的时空动态建模:以 2016 年寨卡病毒爆发为例
  • 批准号:
    1853622
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling, Analysis, and Control of the Spatio-temporal Dynamics of Swarm Robotic Systems
协作研究:群体机器人系统时空动力学的建模、分析和控制
  • 批准号:
    1435709
  • 财政年份:
    2014
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Research Initiation Award - Spatial and Temporal Modeling of Mercury Fate and Dynamics in Tennessee Watersheds
研究启动奖 - 田纳西州流域水星命运和动态的时空建模
  • 批准号:
    1400962
  • 财政年份:
    2014
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling, Analysis, and Control of the Spatio-temporal Dynamics of Swarm Robotic Systems
协作研究:群体机器人系统时空动力学的建模、分析和控制
  • 批准号:
    1436960
  • 财政年份:
    2014
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
EAGER: Collaborative: A Multi-Disciplinary Framework for Modeling Spatial, Temporal and Social Dynamics of Cyber Criminals
EAGER:协作:对网络犯罪分子的空间、时间和社会动态进行建模的多学科框架
  • 批准号:
    1343245
  • 财政年份:
    2013
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了