Dynamic Signal Detection in Non- and Semi-Parametric Models

非参数和半参数模型中的动态信号检测

基本信息

  • 批准号:
    1812258
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

In the big data era, massive data with complex structures are generated in an explosive fashion. Non- and semi-parametric models are powerful statistical tools for exploring nonlinear patterns hidden in complex data, and have been used in a wide range of fields, such as, biomedical science, geology, engineering and social sciences. However, traditional non- and semi-parametric methods are limited in their ability to deal with massive data of high dimensions. The goal of the proposed research is to develop effective tools for dynamic estimation and variable selection for non- and semi-parametric models in the massive complex data setting. The proposed research generates new methods and theory, and will provide practitioners in different fields with tools to better understand complex and dynamic structures in massive data. As an effective dimension reduction tool, variable selection is very useful for modeling high-dimensional data. In recent years, the properties of the penalized methods have been well investigated for both linear models and semiparametric models. However, those methods generally do not allow the variable selection to dynamically change with other variables. For many longitudinal or spatial data in practice, there is a need to develop a general framework for dynamic variable selection that allows possibly different sets of relevant variables to be selected in different time periods or at different spatial locations. The objectives of the proposed research include: (1) to develop a novel procedure for dynamic variable selection in the varying coefficient model; (2) to provide large sample properties to ensure that the proposed method provides an optimal solution when the sample size is sufficiently large; (3) to develop an efficient algorithm which allows one to obtain a higher percentage of correct-fitting even when the dimension of covariates is large; (4) to apply the dynamic variable selection to study time-varying network data ; (5) to develop an innovative penalized spline procedure with triangulations which plays the roles of dynamic local signal detection, as well as efficient estimation of sparse non-parametric functions on irregular domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据时代,具有复杂结构的海量数据以爆发式的方式产生。非参数和半参数模型是探索复杂数据中隐藏的非线性模式的强大统计工具,已广泛应用于生物医学、地质、工程和社会科学等领域。然而,传统的非参数和半参数方法处理大量高维数据的能力有限。提出的研究目标是开发有效的工具来动态估计和变量选择的非参数和半参数模型在大量复杂的数据集。提出的研究产生了新的方法和理论,并将为不同领域的从业者提供更好地理解海量数据中复杂和动态结构的工具。变量选择作为一种有效的降维工具,对高维数据建模非常有用。近年来,惩罚方法的性质在线性模型和半参数模型上都得到了很好的研究。但是,这些方法通常不允许变量选择随其他变量动态变化。对于实践中的许多纵向或空间数据,需要制定一个动态变量选择的一般框架,允许在不同的时间段或不同的空间位置选择可能不同的相关变量集。本文的研究目标包括:(1)建立变系数模型中动态变量选择的新方法;(2)提供大样本特性,以确保所提出的方法在样本量足够大时提供最优解;(3)开发一种有效的算法,即使协变量的维数很大,也能获得较高的正确拟合百分比;(4)应用动态变量选择方法研究时变网络数据;(5)提出了一种新的惩罚样条方法,该方法具有动态局部信号检测和不规则域上稀疏非参数函数的有效估计等功能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time‐varying feature selection for longitudinal analysis
用于纵向分析的时变特征选择
  • DOI:
    10.1002/sim.8412
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Xue, Lan;Shu, Xinxin;Shi, Peibei;Wu, Colin O.;Qu, Annie
  • 通讯作者:
    Qu, Annie
Information criterion for nonparametric model-assisted survey estimators
非参数模型辅助调查估计器的信息标准
Time-varying correlation structure estimation and local feature detection for spatio-temporal data
时空数据的时变相关结构估计和局部特征检测
Canopy spray deposition and related mortality impacts of commonly used insecticides on Drosophila suzukii Matsumura (Diptera: Drosophilidae) populations in blueberry
  • DOI:
    10.1002/ps.5672
  • 发表时间:
    2019-12-05
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Mermer, Serhan;Pfab, Ferdinand;Walton, Vaughn M.
  • 通讯作者:
    Walton, Vaughn M.
TIME-VARYING ESTIMATION AND DYNAMIC MODEL SELECTION WITH AN APPLICATION OF NETWORK DATA
应用网络数据的时变估计和动态模型选择
  • DOI:
    10.5705/ss.202017.0218
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Xue,Lan;Shu,Xinxin;Qu,Annie
  • 通讯作者:
    Qu,Annie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lan Xue其他文献

ニッケル錯体をカチオンとする磁性サーモクロミックイオン液体の開発
以镍配合物为阳离子的磁性热致变色离子液体的研制
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lan Xue;持田智行;高橋一志;櫻井敬博;太田仁
  • 通讯作者:
    太田仁
Multifunctional amino acids empowering bifunctional biosensing platform for depression study
多功能氨基酸为抑郁症研究提供双功能生物传感平台
  • DOI:
    10.1016/j.bios.2022.113972
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Shengnan Yang;Wei Feng;Lan Xue;Mengai Yin;Binshuai Li;Lina Lu;Fuju Dai;Jun Jiao;Qiang Chen
  • 通讯作者:
    Qiang Chen
Deep eutectic solvent-assisted synthesis of porous Ni2CO3(OH)(2)/SiO2 nanosheets for ultra-efficient removal of anionic dyes from water
深度共晶溶剂辅助合成多孔 Ni2CO3(OH)(2)/SiO2 纳米片用于超高效去除水中阴离子染料
  • DOI:
    10.1016/j.jcis.2021.07.046
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Shi Ruifen;Zhang Baolong;Chen Wenjun;Lan Xue;Yang Yuechao;Mu Tiancheng
  • 通讯作者:
    Mu Tiancheng
The experience of migrant entrepreneurs in destinations: A cognitive dissonance perspective
  • DOI:
    10.1016/j.annals.2024.103849
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lan Xue;Haitao Sun
  • 通讯作者:
    Haitao Sun
Electrochemical sensor based on magnetic nanohybrids of multiple phthalocyanine doped ferrites/CMWCNTs for detection of rosmarinic acid
基于多种酞菁掺杂铁氧体/CMWCNT磁性纳米杂化物的电化学传感器,用于检测迷迭香酸
  • DOI:
    10.1016/j.talanta.2021.122165
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Zihua Wang;Yunyun Wang;Shengnan Yang;Lan Xue;Wei Feng;Xinran Liu;Binshuai Li;Mengai Yin;Jun Jiao;Qiang Chen
  • 通讯作者:
    Qiang Chen

Lan Xue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lan Xue', 18)}}的其他基金

Robust Frontier and Boundary Estimation: Theory and Application
鲁棒前沿和边界估计:理论与应用
  • 批准号:
    0906739
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
GOALI: A New Method of Technology Transfer with Application to Particulate and Multiphase (SGER)
GOALI:应用于颗粒和多相的技术转让新方法 (SGER)
  • 批准号:
    9528220
  • 财政年份:
    1995
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
  • 批准号:
    81601856
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
  • 批准号:
    81301123
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REU Site: Research Experience for Undergraduates in Biosensing - Engineering Molecular or Nanoscale Signal Transducers for High-Performance Bio-Detection
REU 网站:生物传感本科生研究经验 - 工程分子或纳米级信号传感器用于高性能生物检测
  • 批准号:
    2243754
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Creation of a platform for the evaluation of signal toxicity, starting with the development of methods for the detection and diagnosis of brain function disruption.
创建一个评估信号毒性的平台,首先开发检测和诊断脑功能中断的方法。
  • 批准号:
    23H00512
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Optimizing Acquisition and Reconstruction of Under-sampled MRI for Signal Detection
优化欠采样 MRI 的采集和重建以进行信号检测
  • 批准号:
    10730707
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
From signal detection to quantum dynamics in biology
从信号检测到生物学中的量子动力学
  • 批准号:
    EP/X019926/1
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Broadband sensor array measurements, signal processing, detection and classification of rare events
宽带传感器阵列测量、信号处理、罕见事件的检测和分类
  • 批准号:
    RGPIN-2019-04902
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Developing new tools in community detection and graph-based signal analysis
开发社区检测和基于图形的信号分析的新工具
  • 批准号:
    2784491
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Studentship
Exploring Signal Detection via Multitaper Transfer Function Estimates: Extension to a Generalized Framework of Time Series Regression Models and Applications
通过多锥度传递函数估计探索信号检测:扩展到时间序列回归模型和应用的通用框架
  • 批准号:
    570341-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A study on time division multiplexing of stochastic resonance phenomena and its application to biological signal detection
随机共振现象时分复用研究及其在生物信号检测中的应用
  • 批准号:
    22K18176
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Artificial intelligence, signal and data processing towards greater end-user flexibility through increased sensitivity and detection efficiency in PET imaging
人工智能、信号和数据处理通过提高 PET 成像的灵敏度和检测效率来提高最终用户的灵活性
  • 批准号:
    RGPIN-2016-05036
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring memory processes: Signal detection theory, the diagnostic-feature-detection hypothesis, and eyewitness decision-making
探索记忆过程:信号检测理论、诊断特征检测假设和目击者决策
  • 批准号:
    546887-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了