Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
基本信息
- 批准号:2208293
- 负责人:
- 金额:$ 19.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The inverse electromagnetic scattering problem (IESP) aims to determine an unknown object from the electromagnetic fields scattered by that object. The IESP has been an active research topic in the engineering, mathematics, and physics communities for the past three decades due to its impact on a wide range of applications including radar, nondestructive testing, medical imaging, and geophysical exploration. However, solving the IESP is very challenging since this problem is in general highly nonlinear and severely ill-posed. Therefore, although computational algorithms have been extensively studied for the IESP, there is still a high demand for algorithms with improved efficiency and robustness. The project addresses this demand by developing new and highly efficient sampling-type algorithms for the IESP in the context of optics and radar. This project will also involve the training of undergraduate and graduate students in computational mathematics. Solving the IESP involves proper sampling methods to construct an approximate indicator function for the unknown scattering object. Ideally these sampling methods are fast, non-iterative, and do not require a priori information about the scattering object. In this project, the principal investigator and graduate students will develop new sampling-type methods for the IESP for both the Helmholtz equation and the system of Maxwell's equations in different types of scattering media, including infinite periodic media, small and point-like objects, bounded inhomogeneous media, and nonlinear media. In addition to the aforementioned features, the sampling-type methods that will be developed in this project will be simple to implement and extremely robust against noise in the data. The resolution and stability analysis of these sampling-type methods and their validation by experimental data will be investigated. The new methods are expected to provide a promising alternative tool to solve the IESP in optics and radar.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
逆电磁散射问题(IESP)的目的是从未知目标的散射电磁场中确定该目标。在过去的三十年里,IESP一直是工程界、数学界和物理界的一个活跃的研究课题,因为它对雷达、无损检测、医学成像和地球物理勘探等广泛的应用产生了影响。然而,求解IESP问题是非常具有挑战性的,因为这个问题通常是高度非线性和严重不适定的。因此,虽然IESP的计算算法已经得到了广泛的研究,但对提高效率和稳健性的算法仍然有很高的要求。该项目通过为光学和雷达领域的IESP开发新的高效采样型算法来满足这一需求。该项目还将涉及计算数学方面的本科生和研究生的培训。求解IESP问题涉及到适当的采样方法,以构造未知散射目标的近似指示函数。理想情况下,这些采样方法是快速的、非迭代的,并且不需要关于散射对象的先验信息。在这个项目中,首席研究员和研究生将为不同类型的散射介质中的亥姆霍兹方程和麦克斯韦方程组开发新的采样型方法,包括无限周期介质、小的点状物体、有界的非均匀介质和非线性介质。除上述特征外,本项目将开发的抽样类型方法将易于实施,并且对数据中的噪声具有极强的抗干扰性。这些采样型方法的分辨率和稳定性分析以及它们的实验数据的验证将被研究。预计新方法将提供一种有前途的替代工具来解决光学和雷达领域的IESP问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new sampling indicator function for stable imaging of periodic scattering media
- DOI:10.1088/1361-6420/acce5f
- 发表时间:2022-05
- 期刊:
- 影响因子:2.1
- 作者:Dinh-Liem Nguyen;Kale Stahl;TrungDung Truong
- 通讯作者:Dinh-Liem Nguyen;Kale Stahl;TrungDung Truong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinh-Liem Nguyen其他文献
Direct and inverse electromagnetic scattering problems for bi-anisotropic media
- DOI:
10.1088/1361-6420/ab382d - 发表时间:
2019-11 - 期刊:
- 影响因子:2.1
- 作者:
Dinh-Liem Nguyen - 通讯作者:
Dinh-Liem Nguyen
Spectral Methods for Direct and Inverse Scattering from Periodic Structures
- DOI:
- 发表时间:
2012-12 - 期刊:
- 影响因子:0
- 作者:
Dinh-Liem Nguyen - 通讯作者:
Dinh-Liem Nguyen
Shape identification of anisotropic diffraction gratings for TM-polarized electromagnetic waves
- DOI:
10.1080/00036811.2013.835041 - 发表时间:
2014-05 - 期刊:
- 影响因子:1.1
- 作者:
Dinh-Liem Nguyen - 通讯作者:
Dinh-Liem Nguyen
Orthogonality sampling type methods for an inverse acoustic scattering problem
- DOI:
- 发表时间:
2020-10 - 期刊:
- 影响因子:0
- 作者:
Dinh-Liem Nguyen - 通讯作者:
Dinh-Liem Nguyen
The factorization method for the Drude-Born-Fedorov model for periodic chiral structures
- DOI:
10.3934/ipi.2016010 - 发表时间:
2016-05 - 期刊:
- 影响因子:1.3
- 作者:
Dinh-Liem Nguyen - 通讯作者:
Dinh-Liem Nguyen
Dinh-Liem Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinh-Liem Nguyen', 18)}}的其他基金
Direct and Inverse Electromagnetic Scattering Problems for Complex Periodic Media
复杂周期性介质的正向和逆向电磁散射问题
- 批准号:
1812693 - 财政年份:2018
- 资助金额:
$ 19.85万 - 项目类别:
Standard Grant
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 19.85万 - 项目类别:
Studentship
Next-generation Tempering Methods for Multimodal Sampling: Theory and Applications
下一代多模态采样回火方法:理论与应用
- 批准号:
2245591 - 财政年份:2023
- 资助金额:
$ 19.85万 - 项目类别:
Continuing Grant
Research and cloud deployment of enhanced sampling methods in MovableType
MovableType中增强采样方法的研究和云部署
- 批准号:
10699159 - 财政年份:2023
- 资助金额:
$ 19.85万 - 项目类别:
Scalable Bayesian Methods for Sampling From Complex Probability Distributions
用于从复杂概率分布中采样的可扩展贝叶斯方法
- 批准号:
566614-2021 - 财政年份:2022
- 资助金额:
$ 19.85万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
CAREER: Enhanced Sampling Methods to Characterize Nucleic Acid Structure, Recognition Mechanisms and Function
职业:增强采样方法来表征核酸结构、识别机制和功能
- 批准号:
2235785 - 财政年份:2022
- 资助金额:
$ 19.85万 - 项目类别:
Standard Grant
A comparison between novel and conventional fish community sampling methods in the assessment of coastal wetland degradation.
沿海湿地退化评估中新型鱼类群落采样方法与传统鱼类群落采样方法的比较。
- 批准号:
575366-2022 - 财政年份:2022
- 资助金额:
$ 19.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Randomization/virtual-re-sampling methods, Changepoint detection, Short and long memory processes, Self-normalized partial sums processes, Planar random walks, Strong and weak approximations
随机化/虚拟重采样方法、变化点检测、短记忆过程和长记忆过程、自归一化部分和过程、平面随机游走、强近似和弱近似
- 批准号:
RGPIN-2016-06167 - 财政年份:2022
- 资助金额:
$ 19.85万 - 项目类别:
Discovery Grants Program - Individual
Soil and sediment sorption of cationic surfactants investigated with equilibrium passive sampling methods
采用平衡被动采样方法研究土壤和沉积物对阳离子表面活性剂的吸附
- 批准号:
22H03765 - 财政年份:2022
- 资助金额:
$ 19.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Sampling Designs and Statistical Methods for the Analysis of Complex Life History and Genetic Data
用于分析复杂生活史和遗传数据的抽样设计和统计方法
- 批准号:
RGPIN-2020-05528 - 财政年份:2022
- 资助金额:
$ 19.85万 - 项目类别:
Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
- 批准号:
RGPIN-2016-05686 - 财政年份:2022
- 资助金额:
$ 19.85万 - 项目类别:
Discovery Grants Program - Individual