Multiscale Finite-Element-Simulation of the load carrying behaviour of fibre composite structures

纤维复合材料结构承载行为的多尺度有限元模拟

基本信息

项目摘要

The superior goal of the project is the computation of bearing loads for laminated fiber reinforced polymer structures on two scales. The model which has to be developed will be tested and evaluated by means of practical problems with appearing specialties. These are intersections of structural parts, corner arcs e.g. at a transition of a web to a flange, overlapping in assembling ranges, as well as reinforcements at openings. With existing methods whole structures with these specialties cannot be treated. All element formulations which use global layer wise nodal degrees of freedom to obtain the three dimensional stress and strain state are not suitable. This statement also holds for 3D-full scale computations, since due to the computational effort only detailed problems can be handled. Therefore an essential demand for the global part of the two-scale model is the use of the standard 5 or 6 nodal shell degrees of freedom. Basing on the previous research, geometrical nonlinearity is to be added to the local part of the two-scale model. The local model can be considered as a one-dimensional representative volume element (RVE). This comes with a significant reduction of computing time, compared with conventional three-dimensional RVEs. With the extension an interface to arbitrary nonlinear three-dimensional material laws is available.Delamination is the most important failure mode of laminated fiber reinforced polymers. Since local displacement degrees of freedom are used at the layer boundaries, it is possible to expand the current model to describe delamination. With the introduction of double nodes or so called processing layers discontinuous displacements can be described. Stresses and tangential matrices are obtained through irreversible cohesive laws. The developed two-scale shell model will be applied to above mentioned practical problems. For simple geometries comparisons with the results of existing costly 3D-models and related assessments will be performed.
该项目的上级目标是在两个尺度上计算层压纤维增强聚合物结构的承载力。对所要开发的模型,将通过具有特殊性的实际问题进行检验和评价。这些是结构部件的交叉点、拐角弧(例如腹板到翼缘的过渡处)、装配范围内的重叠以及开口处的加强件。用现有的方法不能处理具有这些特性的整个结构。所有采用整体逐层节点自由度来获得三维应力和应变状态的单元列式都是不合适的。这种说法也适用于3D全尺寸计算,因为由于计算工作量,只能处理详细的问题。因此,对双尺度模型的整体部分的基本要求是使用标准的5或6节点壳自由度。在前人研究的基础上,对双尺度模型的局部区域加入几何非线性。局部模型可以看作是一个一维的代表性体积元(RVE)。与传统的三维RVE相比,这显著减少了计算时间。随着该方法的推广,可以得到任意非线性三维材料规律的界面。分层是纤维增强复合材料层合板最重要的失效模式。由于在层边界处使用了局部位移自由度,因此可以扩展当前模型来描述分层。通过引入双节点或所谓的处理层,可以描述不连续位移。应力和切向矩阵是通过不可逆凝聚定律得到的。所发展的双尺度壳模型将应用于上述实际问题。对于简单的几何形状,将与现有昂贵的3D模型和相关评估的结果进行比较。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear two-scale shell modeling of sandwiches with a comb-like core
  • DOI:
    10.1016/j.compstruct.2016.02.042
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Dominik Heller;F. Gruttmann
  • 通讯作者:
    Dominik Heller;F. Gruttmann
A shell element for the prediction of residual load‐carrying capacities due to delamination
Theory and numerics of layered shells with variationally embedded interlaminar stresses
Shear correction factors for layered plates and shells
  • DOI:
    10.1007/s00466-016-1339-2
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    F. Gruttmann;W. Wagner
  • 通讯作者:
    F. Gruttmann;W. Wagner
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Friedrich Gruttmann其他文献

Professor Dr.-Ing. Friedrich Gruttmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Friedrich Gruttmann', 18)}}的其他基金

A finite element model for simulation of delaminations in laminated glass panels subjected to cyclic thermal loading
用于模拟循环热载荷下夹层玻璃板分层的有限元模型
  • 批准号:
    389600657
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Entwicklung von Finite-Element-Modellen zur Analyse des Tragverhaltens hochbelasteter Faserverbund-Biegeträger
开发有限元模型来分析高负载纤维复合材料弯曲梁的承载行为
  • 批准号:
    42164385
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Finite-Element-Modelle zur Berechnung von Delaminationen dünner Schichten
用于计算薄层分层的有限元模型
  • 批准号:
    5447612
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
FE-Algorithmen zur Analyse der Entwicklung orthotroper Elastoplastizität bei Metallen
用于分析金属正交各向异性弹塑性发展的有限元算法
  • 批准号:
    5402282
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of multiscale forward finite element musculoskeletal model for rehabilitation and artificial prosthesis design
开发用于康复和人工假肢设计的多尺度正向有限元肌肉骨骼模型
  • 批准号:
    20K20162
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Bridging finite element-molecular dynamics method for multiscale modeling of solids
用于固体多尺度建模的有限元-分子动力学桥接方法
  • 批准号:
    217525-2008
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Finite Element Methods for Multiscale Geometric PDE: Modeling, Analysis, and Computation
多尺度几何偏微分方程的自适应有限元方法:建模、分析和计算
  • 批准号:
    1109325
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Bridging finite element-molecular dynamics method for multiscale modeling of solids
用于固体多尺度建模的有限元-分子动力学桥接方法
  • 批准号:
    217525-2008
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Bridging finite element-molecular dynamics method for multiscale modeling of solids
用于固体多尺度建模的有限元-分子动力学桥接方法
  • 批准号:
    217525-2008
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale modeling and extended finite element analysis of fracture processes in ceramics
陶瓷断裂过程的多尺度建模和扩展有限元分析
  • 批准号:
    117343076
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Bridging finite element-molecular dynamics method for multiscale modeling of solids
用于固体多尺度建模的有限元-分子动力学桥接方法
  • 批准号:
    217525-2008
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Bridging finite element-molecular dynamics method for multiscale modeling of solids
用于固体多尺度建模的有限元-分子动力学桥接方法
  • 批准号:
    217525-2008
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Finite Element Methods for Multiscale Problems Governed by Geometric PDE
几何偏微分方程控制多尺度问题的自适应有限元方法
  • 批准号:
    0807811
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptive Finite Element Methods for Nonlinear Multiscale PDE
非线性多尺度偏微分方程的自适应有限元方法
  • 批准号:
    0505454
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了