Adaptive Finite Element Methods for Multiscale Geometric PDE: Modeling, Analysis, and Computation
多尺度几何偏微分方程的自适应有限元方法:建模、分析和计算
基本信息
- 批准号:1109325
- 负责人:
- 金额:$ 64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2014-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NochettoDMS-1109325 Capturing the essential behavior of nonlinear phenomena at the micro- and nanoscales with the simplest and crudest models is of fundamental importance in science and engineering. This allows for understanding of basic mechanisms, the design and implementation of efficient numerical methods for simulation and control of ensuing processes, and the analysis of both models and algorithms. Mathematical models in biophysics (such as biomembranes in both fluid and gel state), in materials science (such as crystal surface morphologies and bilayer actuators), and in shape optimization (including electro-wetting on dielectric) are typical yet quite distinct examples that the investigator studies in the project. The governing partial differential equations are geometric and exhibit disparate space-time scales: point and line singularities (interfaces), thin layers, and large domain deformations, perhaps leading to topology changes. The goal of the project is to model and control such multiscale phenomena, and to design, test, and analyze reliable and efficient adaptive finite element methods for them with space-time error control based on a posteriori error estimation. Understanding the mechanisms of nonlinear phenomena at micro- and nanoscales is essential in many areas of science and engineering. The investigator develops mathematical models and reliable computational methods for studying a wide range of such problems. This project deals with applications of Federal strategic interest such as nano and microtechnology (such as the design and control of micro electro-mechanical system (MEMS)), biotechnology (such as the study of biomembranes), and high performance computing (such as the design of novel efficient numerical methods). It is a collaborative endeavor involving a number of scientists in the US and abroad, as well as several graduate students and postdocs. A substantial effort is devoted to education and human resource development.
用最简单和最粗糙的模型捕捉微观和纳米尺度上非线性现象的基本行为在科学和工程中具有重要意义。这允许理解基本机制,设计和实施有效的数值方法来模拟和控制随后的过程,以及模型和算法的分析。生物物理学(如流体和凝胶状态下的生物膜)、材料科学(如晶体表面形态学和双层致动器)和形状优化(包括电介质上的电润湿)中的数学模型是研究者在该项目中研究的典型但非常独特的例子。控制偏微分方程是几何的,表现出不同的时空尺度:点和线的奇点(界面)、薄层和大的域变形,可能导致拓扑变化。该项目的目标是对这种多尺度现象进行建模和控制,并设计、测试和分析基于后验误差估计的时空误差控制的可靠、有效的自适应有限元方法。了解微观和纳米尺度的非线性现象的机制在科学和工程的许多领域是必不可少的。研究者开发数学模型和可靠的计算方法来研究广泛的此类问题。该项目涉及联邦战略利益的应用,如纳米和微技术(如微机电系统(MEMS)的设计和控制),生物技术(如生物膜的研究)和高性能计算(如新型高效数值方法的设计)。这是一项合作的努力,涉及美国和国外的一些科学家,以及一些研究生和博士后。在教育和人力资源发展方面作出了大量努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Nochetto其他文献
Ricardo Nochetto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Nochetto', 18)}}的其他基金
Nonlinear Geometric Models: Algorithms, Analysis, and Computation
非线性几何模型:算法、分析和计算
- 批准号:
1908267 - 财政年份:2019
- 资助金额:
$ 64万 - 项目类别:
Continuing Grant
Conference on the Foundations of Computational Mathematics 2017
2017年计算数学基础会议
- 批准号:
1723153 - 财政年份:2017
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
Nonlinear Multiscale Phenomena: Analysis, Control, and Computation
非线性多尺度现象:分析、控制和计算
- 批准号:
1411808 - 财政年份:2014
- 资助金额:
$ 64万 - 项目类别:
Continuing Grant
Adaptive Finite Element Methods for Multiscale Problems Governed by Geometric PDE
几何偏微分方程控制多尺度问题的自适应有限元方法
- 批准号:
0807811 - 财政年份:2008
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
Adaptive Finite Element Methods for Nonlinear Multiscale PDE
非线性多尺度偏微分方程的自适应有限元方法
- 批准号:
0505454 - 财政年份:2005
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
U.S.-Argentina Program: Harmonic Analysis and Numerical Analysis Problems in MRI and PDE
美国-阿根廷项目:MRI 和 PDE 中的调和分析和数值分析问题
- 批准号:
0126272 - 财政年份:2002
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
Adaptive Finite Element Methods for Nonlinear Multiscale Problems
非线性多尺度问题的自适应有限元方法
- 批准号:
0204670 - 财政年份:2002
- 资助金额:
$ 64万 - 项目类别:
Continuing Grant
U.S.-Germany Cooperative Research: Diffusion, Advection, Phase Changes and Interfaces
美德合作研究:扩散、平流、相变和界面
- 批准号:
0129243 - 财政年份:2002
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
Interphase 2001: Numerical Methods for Free Boundary Problems
Interphase 2001:自由边界问题的数值方法
- 批准号:
0112321 - 财政年份:2001
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
U.S.-Germany Cooperative Research: Diffusion, Advection, Phase Changes and Interfaces
美德合作研究:扩散、平流、相变和界面
- 批准号:
9910086 - 财政年份:2000
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208402 - 财政年份:2022
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
- 批准号:
2208426 - 财政年份:2022
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2022-04190 - 财政年份:2022
- 资助金额:
$ 64万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2021
- 资助金额:
$ 64万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2020
- 资助金额:
$ 64万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Finite Element Methods for Flows in Porous Media
多孔介质流动的自适应有限元方法
- 批准号:
2281583 - 财政年份:2019
- 资助金额:
$ 64万 - 项目类别:
Studentship
EAGER: Numerical two-dimensional fluid simulations and finite element analysis to model an adaptive and flexible microplasma discharge system.
EAGER:数值二维流体模拟和有限元分析,用于对自适应且灵活的微等离子体放电系统进行建模。
- 批准号:
1917144 - 财政年份:2019
- 资助金额:
$ 64万 - 项目类别:
Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2019
- 资助金额:
$ 64万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2018
- 资助金额:
$ 64万 - 项目类别:
Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
- 批准号:
RGPIN-2016-04891 - 财政年份:2017
- 资助金额:
$ 64万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




