Time-Consistency Theory for Time-Inconsistent Stochastic Optimal Control Problems
时间不一致随机最优控制问题的时间一致性理论
基本信息
- 批准号:1812921
- 负责人:
- 金额:$ 19.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Decision-making problems are encountered in many areas, most notably in economics. Time-inconsistency is a phenomenon in which the preferences of a decision maker change over time, due to various factors. Careful studies show that there are two main reasons for this: the decision makers' time preferences and their risk preferences. The former is due to the fact that decision makers may place more weight on the immediate utility, while the latter is due to the decision makers' different subjective opinions in estimating the risks associated to their decisions at various times. This project studies general time-inconsistent problems quantitatively, from the point of view of stochastic optimal control theory, with the goal of obtaining time-consistent equilibrium solutions to these problems. The results obtained should lead to a better understanding of the time-inconsistency issue and provide some guidance towards making time-consistent decisions that are acceptable in practical situations. The expectation is that the theories developed in this project will be applicable to asset pricing, risk management, resource allocation, and production planning. Graduate students will be trained as part of the project. In time-inconsistency problems, time preferences can be described mathematically by discounting, which may be exponential or non-exponential, while risk preferences can be described by the choice of expectation operators, such as the classical expectation or various nonlinear versions of it. Classical stochastic optimal control problems of continuous-time dynamical systems involve exponential discounting and classical expectations. In this case, Bellman's principle of optimality holds, which leads to time-consistency of optimal controls, that is, an optimal control found for a given initial pair of time and state will remain optimal afterwards. However, when a stochastic optimal control problem involves either a non-exponential discounting, or a non-classical expectation operator, the problem becomes time-inconsistent, namely, an optimal control selected at a given time based on the given initial state does not remain optimal at a later time. This project aims to develop general tools for finding time-consistent equilibrium strategies (rather than time-inconsistent optimal controls) for time-inconsistent stochastic optimal control problems. The specific problems to be investigated involve cost functionals depending on initial pair and conditional expectations, recursive cost functionals, as well as problems with distorted probability. It is expected that this project will provide a better understanding of the time-inconsistency of optimal control problems and that the theory developed will significantly contribute to the area of mathematical optimal control. Further, the project will have a significant impact in applications and in other areas of mathematics, such as stochastic analysis, mathematical finance, differential games, and partial differential equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
决策问题在许多领域都会遇到,尤其是在经济学领域。时间不一致是一种现象,在这种现象中,由于各种因素,决策者的偏好会随着时间而改变。仔细研究表明,这主要有两个原因:决策者的时间偏好和风险偏好。前者是由于决策者可能更看重眼前效用,而后者是由于决策者在不同时间对与其决策相关的风险的估计有不同的主观意见。本课题从随机最优控制理论的角度,对一般时间不一致问题进行定量研究,以期得到这些问题的时间一致均衡解。获得的结果应该有助于更好地理解时间不一致问题,并为制定在实际情况下可接受的时间一致决策提供一些指导。期望在这个项目中发展的理论将适用于资产定价,风险管理,资源配置和生产计划。研究生将作为项目的一部分接受培训。在时间不一致问题中,时间偏好可以通过折现来描述,折现可以是指数或非指数的,而风险偏好可以通过期望算子的选择来描述,例如经典期望或各种非线性版本。经典的连续时间动力系统随机最优控制问题涉及指数折现和经典期望。在这种情况下,Bellman的最优性原理成立,这导致了最优控制的时间一致性,即对于给定的初始时间和状态对找到的最优控制将在之后保持最优。然而,当随机最优控制问题涉及非指数折现或非经典期望算子时,问题变得时间不一致,即在给定时间基于给定初始状态选择的最优控制在以后的时间不会保持最优。该项目旨在开发通用工具,用于寻找时间一致的均衡策略(而不是时间不一致的最优控制),以解决时间不一致的随机最优控制问题。要研究的具体问题包括依赖于初始对和条件期望的成本函数、递归成本函数以及具有扭曲概率的问题。期望本项目将提供对最优控制问题的时间不一致性的更好理解,并且所发展的理论将对数学最优控制领域做出重大贡献。此外,该项目将对应用和其他数学领域产生重大影响,如随机分析、数学金融、微分对策和偏微分方程。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuity of the value function for deterministic optimal impulse control with terminal state constraint
- DOI:10.1051/cocv/2021101
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Yue Zhou;Xinwei Feng;J. Yong
- 通讯作者:Yue Zhou;Xinwei Feng;J. Yong
A Finite Horizon Optimal Stochastic Impulse Control Problem with A Decision Lag
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Chang Li;J. Yong
- 通讯作者:Chang Li;J. Yong
Linear quadratic stochastic optimal control problems with operator coefficients: open-loop solutions
- DOI:10.1051/cocv/2018013
- 发表时间:2017-01
- 期刊:
- 影响因子:0
- 作者:Qingmeng Wei;J. Yong;Zhiyong Yu
- 通讯作者:Qingmeng Wei;J. Yong;Zhiyong Yu
Data informed solution estimation for forward-backward stochastic differential equations
- DOI:10.1142/s0219530520400102
- 发表时间:2020-10
- 期刊:
- 影响因子:2.2
- 作者:F. Bao;Yanzhao Cao;J. Yong
- 通讯作者:F. Bao;Yanzhao Cao;J. Yong
An Efficient Numerical Algorithm for Solving Data Driven Feedback Control Problems
解决数据驱动反馈控制问题的高效数值算法
- DOI:10.1007/s10915-020-01358-y
- 发表时间:2020-06
- 期刊:
- 影响因子:2.5
- 作者:Archibald Richard;Bao Feng;Yong Jiongmin;Zhou Tao
- 通讯作者:Zhou Tao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiongmin Yong其他文献
Regularity Analysis for an Abstract System of Coupled Hyperbolic and Parabolic Equations
双曲和抛物型耦合方程抽象方程组的正则分析
- DOI:
10.1016/j.jde.2015.06.010 - 发表时间:
2014-04 - 期刊:
- 影响因子:2.4
- 作者:
Jianghao Hao;Zhuangyi Liu;Jiongmin Yong - 通讯作者:
Jiongmin Yong
Social Optima in Mean Field Linear-Quadratic-Gaussian Control with Volatility Uncertainty
具有波动性不确定性的平均场线性二次高斯控制的社会最优
- DOI:
10.1137/19m1306737 - 发表时间:
2019-12 - 期刊:
- 影响因子:2.2
- 作者:
Jianhui Huang;Bing-Chang Wang;Jiongmin Yong - 通讯作者:
Jiongmin Yong
Stochastic linear-quadratic optimal control problems with random coefficients: Closed-Loop Representation of Open-Loop Optimal Controls
具有随机系数的随机线性二次最优控制问题:开环最优控制的闭环表示
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jingrui Sun;Jie Xiong;Jiongmin Yong - 通讯作者:
Jiongmin Yong
Representation of Ito integrals by Lebesgue/Bochner integrals
用 Lebesgue/Bochner 积分表示 Ito 积分
- DOI:
10.4171/jems/347 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qi Lü;Jiongmin Yong;Xu Zhang - 通讯作者:
Xu Zhang
Turnpike Properties for Stochastic Linear-Quadratic Optimal Control Problems
随机线性二次最优控制问题的收费公路特性
- DOI:
10.1007/s11401-022-0374-x - 发表时间:
2022-02 - 期刊:
- 影响因子:0
- 作者:
Jingrui Sun;Hanxiao Wang;Jiongmin Yong - 通讯作者:
Jiongmin Yong
Jiongmin Yong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiongmin Yong', 18)}}的其他基金
Several Problems of Stochastic Optimal Controls in Infinite Time Horizon
无限时间范围内随机最优控制的几个问题
- 批准号:
2305475 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Time-Inconsistent Optimal Control Problems for Stochastic Differential Equations
随机微分方程的时间不一致最优控制问题
- 批准号:
1406776 - 财政年份:2014
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Optimal Control Problems with Time-Inconsistency and Related Topics
时间不一致的最优控制问题及相关主题
- 批准号:
1007514 - 财政年份:2010
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Optimal Control for Forward-Backward Stochastic Differential Equations and Related Topics
前向-后向随机微分方程的最优控制及相关主题
- 批准号:
0604309 - 财政年份:2006
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
相似海外基金
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
CRII: CSR: Enhancing Eventual Data Consistency in Multidimensional Scientific Computing through Lightweight In-Memory Distributed Ledger System.
CRII:CSR:通过轻量级内存分布式账本系统增强多维科学计算中的最终数据一致性。
- 批准号:
2348330 - 财政年份:2024
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Add new algorithm for interframe consistency to our AI-powered rotoscoping tool
为我们的人工智能驱动的动态观察工具添加新的帧间一致性算法
- 批准号:
10070571 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Collaborative R&D
Advanced process control of AAV manufacture: digitalisation, PAT and automation to improve productivity, quality and consistency
AAV 制造的先进流程控制:数字化、PAT 和自动化,以提高生产率、质量和一致性
- 批准号:
10064155 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Collaborative R&D
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
- 批准号:
2313146 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
CSR: Small: Accelerating Data Intensive Scientific Workflows with Consistency Contracts
CSR:小:通过一致性合同加速数据密集型科学工作流程
- 批准号:
2317556 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant
Regional Joint System of Child-Rearing Education: A Study of Comprehensive Local Government Policies with Horizontal Cooperation and Vertical Consistency
区域育儿教育联动体系:横向合作、纵向一致的地方政府综合政策研究
- 批准号:
23K02097 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vaccine Hesitancy: Exploring the Role of Temporal and Cross-country Variation in COVID Rules, Vaccine Media Coverage, and Public Health Policy Consistency
疫苗犹豫:探索时间和跨国差异在新冠肺炎规则、疫苗媒体报道和公共卫生政策一致性中的作用
- 批准号:
10792031 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
CAREER: Composable Memory Consistency Models for Heterogeneous Systems
职业:异构系统的可组合内存一致性模型
- 批准号:
2239400 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Continuing Grant
CPS: TTP Option: Small: Consistency vs. Availability in Cyber-Physical Systems
CPS:TTP 选项:小:网络物理系统中的一致性与可用性
- 批准号:
2233769 - 财政年份:2023
- 资助金额:
$ 19.59万 - 项目类别:
Standard Grant