Time-Inconsistent Optimal Control Problems for Stochastic Differential Equations
随机微分方程的时间不一致最优控制问题
基本信息
- 批准号:1406776
- 负责人:
- 金额:$ 18.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plans are most often made under the time-consistency assumption that optimal strategies designed at the beginning of a time period will remain optimal throughout the period under consideration. However, almost everyone has to admit that this is rarely the case. In fact, more often than not, an optimal policy made at the beginning of a period will not stay optimal thereafter; this phenomenon is called time-inconsistency. Studies show that the two main reasons for time-inconsistency are people's time-preferences and risk-preferences. An example of the former is that if there is no enforced contract, people may find it difficult to keep their promises. An example of the latter is that different groups of people will have different subjective views on the risk inherent in a certain stock purchase. Mainly due to these two types of preferences, the 'optimal' plan cannot stay optimal as time goes by. The current project is to quantitatively study such a problem from an optimal control point of view. The goal is to obtain time-consistent equilibrium strategies, under certain conditions, for time-inconsistent problems. We expect that the results of the proposed theory will increase our understanding of the time-inconsistency issue, and ultimately help in the making of better time-consistent decisions. Mathematically, classical optimal control problems are time-consistent in the sense that an optimal control found at a given initial pair of time and state will stay optimal thereafter for the corresponding initial pair. When the discount is general, not exponential, and/or the conditional expectations of the state and the control nonlinearly appear in the performance index, the corresponding optimal control problem will be time-inconsistent. To obtain time-consistent open-loop equilibrium strategies, we will use variational methods, together with theory of forward-backward stochastic differential equations. To obtain time-consistent closed-loop equilibrium strategies, we will modify dynamic programming principles, and adopt/introduce multi-person differential games. This project will enrich (stochastic) optimal control theory and related areas.
计划通常是在时间一致性假设下制定的,即在一个时间段开始时设计的最优策略在整个考虑期间都将保持最优。 然而,几乎所有人都不得不承认,这种情况很少发生。事实上,在一个时期开始时制定的最优政策往往不会在此后保持最优;这种现象被称为时间不一致。研究表明,时间不一致性的两个主要原因是人们的时间偏好和风险偏好。前者的一个例子是,如果没有强制执行的合同,人们可能会发现很难信守承诺。后者的一个例子是,不同群体的人会对某种股票购买所固有的风险有不同的主观看法。主要由于这两种类型的偏好,随着时间的推移,“最优”计划不能保持最优。目前的项目是定量研究这样的问题,从最优控制的观点。我们的目标是获得时间一致的均衡策略,在一定的条件下,时间不一致的问题。我们期望所提出的理论的结果将增加我们对时间不一致性问题的理解,并最终有助于做出更好的时间一致性决策。在数学上,经典的最优控制问题是时间一致的,在这个意义上,在给定的初始时间和状态对找到的最优控制将保持最优,此后为相应的初始对。当折扣是一般的,而不是指数,和/或状态和控制的条件期望非线性地出现在性能指标,相应的最优控制问题将是时间不一致的。为了获得时间一致的开环均衡策略,我们将使用变分方法,以及前向-后向随机微分方程理论。为了获得时间一致的闭环均衡策略,我们将修改动态规划原理,并采用/引入多人微分对策。本项目将丰富(随机)最优控制理论及相关领域。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linear–quadratic stochastic two-person nonzero-sum differential games: Open-loop and closed-loop Nash equilibria
- DOI:10.1016/j.spa.2018.03.002
- 发表时间:2016-07
- 期刊:
- 影响因子:1.4
- 作者:Jingrui Sun;J. Yong
- 通讯作者:Jingrui Sun;J. Yong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiongmin Yong其他文献
Regularity Analysis for an Abstract System of Coupled Hyperbolic and Parabolic Equations
双曲和抛物型耦合方程抽象方程组的正则分析
- DOI:
10.1016/j.jde.2015.06.010 - 发表时间:
2014-04 - 期刊:
- 影响因子:2.4
- 作者:
Jianghao Hao;Zhuangyi Liu;Jiongmin Yong - 通讯作者:
Jiongmin Yong
Social Optima in Mean Field Linear-Quadratic-Gaussian Control with Volatility Uncertainty
具有波动性不确定性的平均场线性二次高斯控制的社会最优
- DOI:
10.1137/19m1306737 - 发表时间:
2019-12 - 期刊:
- 影响因子:2.2
- 作者:
Jianhui Huang;Bing-Chang Wang;Jiongmin Yong - 通讯作者:
Jiongmin Yong
Stochastic linear-quadratic optimal control problems with random coefficients: Closed-Loop Representation of Open-Loop Optimal Controls
具有随机系数的随机线性二次最优控制问题:开环最优控制的闭环表示
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jingrui Sun;Jie Xiong;Jiongmin Yong - 通讯作者:
Jiongmin Yong
Representation of Ito integrals by Lebesgue/Bochner integrals
用 Lebesgue/Bochner 积分表示 Ito 积分
- DOI:
10.4171/jems/347 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qi Lü;Jiongmin Yong;Xu Zhang - 通讯作者:
Xu Zhang
Turnpike Properties for Stochastic Linear-Quadratic Optimal Control Problems
随机线性二次最优控制问题的收费公路特性
- DOI:
10.1007/s11401-022-0374-x - 发表时间:
2022-02 - 期刊:
- 影响因子:0
- 作者:
Jingrui Sun;Hanxiao Wang;Jiongmin Yong - 通讯作者:
Jiongmin Yong
Jiongmin Yong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiongmin Yong', 18)}}的其他基金
Several Problems of Stochastic Optimal Controls in Infinite Time Horizon
无限时间范围内随机最优控制的几个问题
- 批准号:
2305475 - 财政年份:2023
- 资助金额:
$ 18.7万 - 项目类别:
Standard Grant
Time-Consistency Theory for Time-Inconsistent Stochastic Optimal Control Problems
时间不一致随机最优控制问题的时间一致性理论
- 批准号:
1812921 - 财政年份:2018
- 资助金额:
$ 18.7万 - 项目类别:
Standard Grant
Optimal Control Problems with Time-Inconsistency and Related Topics
时间不一致的最优控制问题及相关主题
- 批准号:
1007514 - 财政年份:2010
- 资助金额:
$ 18.7万 - 项目类别:
Standard Grant
Optimal Control for Forward-Backward Stochastic Differential Equations and Related Topics
前向-后向随机微分方程的最优控制及相关主题
- 批准号:
0604309 - 财政年份:2006
- 资助金额:
$ 18.7万 - 项目类别:
Standard Grant
相似海外基金
Design optimisation of ultrasonic hydrophones with inconsistent crossover calibrations
交叉校准不一致的超声波水听器的设计优化
- 批准号:
10089275 - 财政年份:2024
- 资助金额:
$ 18.7万 - 项目类别:
Collaborative R&D
Scalable Cleaning, Integration and Analysis of Structured and Semi-Structured Inconsistent Data
结构化和半结构化不一致数据的可扩展清理、集成和分析
- 批准号:
RGPIN-2019-04068 - 财政年份:2022
- 资助金额:
$ 18.7万 - 项目类别:
Discovery Grants Program - Individual
Scalable Cleaning, Integration and Analysis of Structured and Semi-Structured Inconsistent Data
结构化和半结构化不一致数据的可扩展清理、集成和分析
- 批准号:
RGPIN-2019-04068 - 财政年份:2021
- 资助金额:
$ 18.7万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Time-Inconsistent Dynamic Optimization
时间不一致动态优化的深度学习
- 批准号:
EP/V008331/1 - 财政年份:2021
- 资助金额:
$ 18.7万 - 项目类别:
Research Grant
Time-inconsistent stochastic control problems and related topics
时间不一致随机控制问题及相关主题
- 批准号:
21J00460 - 财政年份:2021
- 资助金额:
$ 18.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
- 批准号:
20K19813 - 财政年份:2020
- 资助金额:
$ 18.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Cleaning, Integration and Analysis of Structured and Semi-Structured Inconsistent Data
结构化和半结构化不一致数据的可扩展清理、集成和分析
- 批准号:
RGPIN-2019-04068 - 财政年份:2020
- 资助金额:
$ 18.7万 - 项目类别:
Discovery Grants Program - Individual
Accomplishment-Based Renewal: Experimental Studies of Time Inconsistent Preferences for Risk Fairness and Charitable Giving
基于成就的更新:风险公平和慈善捐赠的时间不一致偏好的实验研究
- 批准号:
1951167 - 财政年份:2020
- 资助金额:
$ 18.7万 - 项目类别:
Standard Grant
Scalable Cleaning, Integration and Analysis of Structured and Semi-Structured Inconsistent Data
结构化和半结构化不一致数据的可扩展清理、集成和分析
- 批准号:
RGPIN-2019-04068 - 财政年份:2019
- 资助金额:
$ 18.7万 - 项目类别:
Discovery Grants Program - Individual
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
- 批准号:
502917-2017 - 财政年份:2019
- 资助金额:
$ 18.7万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




