Optimal Control Problems with Time-Inconsistency and Related Topics

时间不一致的最优控制问题及相关主题

基本信息

项目摘要

This project is to establish a general theory of continuous-time optimal control problems (both deterministic and stochastic), for which the state equation and the cost functional are parameterized by the initial time and/or the initial state. For this type of problem, an optimal control/strategy, if it exists, will also depend on the initial time and/or the initial state. Therefore, in general, it will no longer be optimal immediately after the initial time. This feature is referred to as the time-inconsistency. To find time-consistent solutions to the time-inconsistent problem, the investigator will introduce a method of multi-person hierarchical differential games. It is expected that the limiting game as the number of players goes to infinity should lead to a time-consistent equilibrium control/strategy to the original problem. With such a general approach, this project will carefully investigate the following cases: (1) State equation is a linear ordinary differential equation or stochastic differential equation and the cost functional is convex. For such a case, the quasi-Riccati equation technique will be applied/extended to find the time-consistent equilibrium control; (2) State equation is a stochastic differential equation with the cost functional containing some functions of conditional expectation of the state. For such a case, the problem will be transformed to a controlled forward-backward stochastic differential equation (FBSDE) parameterized by the initial time and the initial state. Proper techniques involving maximum principle and dynamic programming, including stochastic partial differential equations, will be developed to solve the problem; (3) State equation is a stochastic Volterra integral equation. For such a case, the theory of backward stochastic Volterra integral equations (BSVIE) recently developed by the investigator will play an essential role, and time-consistent solution will be expected by combining the theory of BSVIEs and multi-person differential games. In real world, as time goes by, it is common that people change their minds or objectives in what can be described as an inconsistent way (due to, for example, change of income and/or living standard, etc.). Similarly, various changes of the environment (advances of technology, new limits of resources, etc.) lead people to inconsistently modifying their ways of running business from time to time. In both cases, one faces time-inconsistent problems, yet time-consistent strategies are desirable. The above considerations served the main motivation of the research in this project.Mathematically, this project will substantially enrich the general theory of deterministic and stochastic optimal control theory from a new aspect. It will have impact on stochastic analysis, mathematical finance, optimal control theory, and differential games. From the point-of-view of applications, the theories developed in this project will provide useful insights for time-inconsistency, nonlinear preferences, and dynamic cumulative prospect theory, etc. Therefore, the results will provide principles for people who are handling problems of optimal investment, asset pricing, risk management, resource (such as oil, power, etc.) allocation, production planning, etc. The expected results will be of interest to relevant theoretic researchers, practitioners in various type industries, as well as a number of government agencies.
本项目旨在建立连续时间(确定性和随机)最优控制问题的一般理论,其中状态方程和成本函数由初始时间和/或初始状态参数化。对于这类问题,最优控制/策略(如果存在的话)也依赖于初始时间和/或初始状态。因此,一般情况下,初始时间过后,它就不再是最优的。这个特性被称为时间不一致性。为了找到时间不一致问题的时间一致的解决方案,研究者将引入一种多人分层微分对策的方法。当参与者的数量趋于无穷大时,预期的极限博弈应该导致原始问题的时间一致的平衡控制/策略。在这种一般方法下,本项目将仔细研究以下情况:(1)状态方程是线性常微分方程或随机微分方程,且代价泛函是凸的。在这种情况下,拟riccati方程技术将被应用/推广到寻找时间一致的平衡控制;(2)状态方程是一个随机微分方程,其代价函数包含状态的条件期望函数。在这种情况下,问题将被转化为一个由初始时间和初始状态参数化的可控正反向随机微分方程(FBSDE)。将发展涉及极大值原理和动态规划的适当技术,包括随机偏微分方程来解决这个问题;(3)状态方程为随机Volterra积分方程。对于这种情况,研究者最近发展的倒向随机Volterra积分方程(BSVIE)理论将发挥重要作用,并将BSVIE理论与多人微分对策相结合,期望得到时间一致的解。在现实世界中,随着时间的推移,人们以一种不一致的方式改变他们的想法或目标是很常见的(例如,由于收入和/或生活水平的变化等)。同样,环境的各种变化(技术的进步,资源的新限制等)导致人们不时地不一致地修改他们的经营方式。在这两种情况下,都面临时间不一致的问题,但时间一致的策略是可取的。上述考虑是本项目研究的主要动机。在数学上,本课题将从一个新的角度丰富确定性和随机最优控制理论的一般理论。它将对随机分析、数学金融、最优控制理论和微分对策产生影响。从应用的角度来看,本项目发展的理论将为时间不一致性、非线性偏好和动态累积前景理论等提供有用的见解。因此,研究结果将为处理最优投资、资产定价、风险管理、资源(如石油、电力等)分配、生产计划等问题的人们提供原则。预期结果将引起相关理论研究者、各类行业从业者以及一些政府机构的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiongmin Yong其他文献

Regularity Analysis for an Abstract System of Coupled Hyperbolic and Parabolic Equations
双曲和抛物型耦合方程抽象方程组的正则分析
  • DOI:
    10.1016/j.jde.2015.06.010
  • 发表时间:
    2014-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jianghao Hao;Zhuangyi Liu;Jiongmin Yong
  • 通讯作者:
    Jiongmin Yong
Social Optima in Mean Field Linear-Quadratic-Gaussian Control with Volatility Uncertainty
具有波动性不确定性的平均场线性二次高斯控制的社会最优
Stochastic linear-quadratic optimal control problems with random coefficients: Closed-Loop Representation of Open-Loop Optimal Controls
具有随机系数的随机线性二次最优控制问题:开环最优控制的闭环表示
Representation of Ito integrals by Lebesgue/Bochner integrals
用 Lebesgue/Bochner 积分表示 Ito 积分
Turnpike Properties for Stochastic Linear-Quadratic Optimal Control Problems
随机线性二次最优控制问题的收费公路特性

Jiongmin Yong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiongmin Yong', 18)}}的其他基金

Several Problems of Stochastic Optimal Controls in Infinite Time Horizon
无限时间范围内随机最优控制的几个问题
  • 批准号:
    2305475
  • 财政年份:
    2023
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
Time-Consistency Theory for Time-Inconsistent Stochastic Optimal Control Problems
时间不一致随机最优控制问题的时间一致性理论
  • 批准号:
    1812921
  • 财政年份:
    2018
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
Time-Inconsistent Optimal Control Problems for Stochastic Differential Equations
随机微分方程的时间不一致最优控制问题
  • 批准号:
    1406776
  • 财政年份:
    2014
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
Optimal Control for Forward-Backward Stochastic Differential Equations and Related Topics
前向-后向随机微分方程的最优控制及相关主题
  • 批准号:
    0604309
  • 财政年份:
    2006
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2022
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Discovery Grants Program - Individual
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
  • 批准号:
    2031213
  • 财政年份:
    2021
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2021
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Discovery Grants Program - Individual
Solving Robust Optimal Control Problems, with Application to Spacecraft Entry, Descent and Landing
解决鲁棒最优控制问题,并将其应用于航天器进入、下降和着陆
  • 批准号:
    2663401
  • 财政年份:
    2020
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Studentship
Optimal control problems in mathematical biology: Modelling, analysis and numerics
数学生物学中的最优控制问题:建模、分析和数值
  • 批准号:
    2435611
  • 财政年份:
    2020
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Studentship
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2020
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
  • 批准号:
    1913035
  • 财政年份:
    2019
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
Time-Consistency Theory for Time-Inconsistent Stochastic Optimal Control Problems
时间不一致随机最优控制问题的时间一致性理论
  • 批准号:
    1812921
  • 财政年份:
    2018
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Standard Grant
Nonlinear Optimal Control for Constrained Systems based on Inverse problems of Convex Optimization
基于凸优化反问题的约束系统非线性最优控制
  • 批准号:
    17K17830
  • 财政年份:
    2017
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Order preserving operators in problems of optimal control and in the theory of partial differential equations
最优控制问题和偏微分方程理论中的保序算子
  • 批准号:
    386620124
  • 财政年份:
    2017
  • 资助金额:
    $ 17.71万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了