From Deterministic Dynamics to Thermodynamic Laws
从确定性动力学到热力学定律
基本信息
- 批准号:1813246
- 负责人:
- 金额:$ 14.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistical mechanics attempts to explain the thermodynamic behavior of large systems and to bridge the gap between the microscopic and macroscopic worlds. Equilibrium statistical mechanics is relatively well-developed, but many problems in non-equilibrium (i.e., irreversible) statistical mechanics have not been well answered yet. In particular, the derivation of macroscopic transport laws from microscopic deterministic dynamics is a century-old challenge (for example, Fourier's law of heat conduction from microscopic heat conduction). In this project, the investigator studies the derivation of thermodynamic properties of a gas that is not at thermal equilibrium, starting from a microscopic particle description of the gas. The microscopic heat conduction problem under study is representative of numerous physical systems that are intrinsically high-dimensional, multiscale, noisy, and non-equilibrium. Mathematical advances on this problem will be of value for other areas of science where non-equilibrium dynamics is an important feature, including materials science, neuroscience, molecular dynamics, fluid dynamics, and bio-chemical networks. The project includes research experience opportunities for undergraduate students.In this project, the investigator studies how thermodynamic properties are derived from non-equilibrium microscopic heat conduction models. The aim is to develop a series of results that connect microscopic deterministic particle systems, mesoscopic stochastic differential equations, and macroscopic thermodynamic laws. Starting from a deterministic kinetic particle system that models the heat conduction among gas particles in a tube with different temperatures at two ends, the project looks numerically for a mathematically tractable stochastic energy exchange process that preserves the main dynamical features of the deterministic problem, examines its stochastic stability and the mesoscopic limit problem when the scale of local dynamics increases, and derives macroscopic thermodynamic properties related to thermal conductivity, long-range correlation, the local thermodynamic equilibrium, and the fluctuation theorem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计力学试图解释大系统的热力学行为,并弥合微观世界和宏观世界之间的差距。 平衡态统计力学是比较发达的,但在非平衡态(即,不可逆转)统计力学尚未得到很好的解答。 特别是,从微观确定性动力学推导宏观输运定律是一个世纪的挑战(例如,从微观热传导推导傅立叶热传导定律)。 在这个项目中,研究人员从气体的微观粒子描述开始,研究不处于热平衡的气体的热力学性质的推导。 所研究的微观热传导问题是众多物理系统的代表,这些物理系统本质上是高维、多尺度、噪声和非平衡的。 在这个问题上的数学进展将是有价值的其他领域的科学,其中非平衡动力学是一个重要的特征,包括材料科学,神经科学,分子动力学,流体动力学和生物化学网络。 本项目包括本科生的研究经验机会。在本项目中,研究者研究如何从非平衡微观热传导模型导出热力学性质。 其目的是发展一系列的结果,连接微观确定性粒子系统,介观随机微分方程和宏观热力学定律。 该项目从模拟两端温度不同的管道中气体颗粒之间热传导的确定性动力学颗粒系统出发,在数值上寻找数学上易于处理的随机能量交换过程,该过程保留了确定性问题的主要动力学特征,研究其随机稳定性和局部动力学尺度增加时的介观极限问题,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A data-driven method for the steady state of randomly perturbed dynamics
- DOI:10.4310/cms.2019.v17.n4.a9
- 发表时间:2018-05
- 期刊:
- 影响因子:1
- 作者:Yao Li
- 通讯作者:Yao Li
Stochastic neural field model: multiple firing events and correlations
- DOI:10.1007/s00285-019-01389-6
- 发表时间:2019-07
- 期刊:
- 影响因子:1.9
- 作者:Yao Li;Hui Xu
- 通讯作者:Yao Li;Hui Xu
Stationary distributions of persistent ecological systems
- DOI:10.1007/s00285-021-01613-2
- 发表时间:2020-03
- 期刊:
- 影响因子:1.9
- 作者:Alexandru Hening;Yao Li
- 通讯作者:Alexandru Hening;Yao Li
A deep learning method for solving Fokker-Planck equations
- DOI:
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Jiayu Zhai;M. Dobson;Yao Li-
- 通讯作者:Jiayu Zhai;M. Dobson;Yao Li-
Unraveling the mechanisms of surround suppression in early visual processing.
- DOI:10.1371/journal.pcbi.1008916
- 发表时间:2021-04
- 期刊:
- 影响因子:4.3
- 作者:Li Y;Young LS
- 通讯作者:Young LS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Li其他文献
Ensemble Framework Combining Family Information for Android Malware Detection
Ensemble Framework 结合系列信息进行 Android 恶意软件检测
- DOI:
10.1093/comjnl/bxac114 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
Yao Li;Zhi Xiong;Tao Zhang;Qinkun Zhang;Ming Fan;Lei Xue - 通讯作者:
Lei Xue
A Novel Ensemble Classification for Data Streams with Class Imbalance and Concept Drift
具有类不平衡和概念漂移的数据流的新型集成分类
- DOI:
10.23940/ijpe.17.06.p15.945955 - 发表时间:
2017-10 - 期刊:
- 影响因子:0
- 作者:
Yange Sun;Zhihai Wang;Hongtao Li;Yao Li - 通讯作者:
Yao Li
Calculation of anharmonic effects in the unimolecular dissociation of M2+ (H2O)(2) (M = Be, Mg, and Ca)
计算 M2 (H2O)(2) 单分子解离中的非简谐效应(M = Be、Mg 和 Ca)
- DOI:
10.1080/00268976.2015.1036148 - 发表时间:
2015 - 期刊:
- 影响因子:1.7
- 作者:
Li Qian;Yao Li;Xia Wenwen;Lin S. H. - 通讯作者:
Lin S. H.
Real-time ballistocardiographic artifact reduction using the k-teager energy operator detector and multi-channel referenced adaptive noise cancelling
使用 k-teager 能量算子检测器和多通道参考自适应噪声消除来减少实时心冲击描记伪影
- DOI:
10.1002/ima.22178 - 发表时间:
2016 - 期刊:
- 影响因子:3.3
- 作者:
Wen Xiaotong;Kang Mingxuan;Yao Li;Zhao Xiaojie - 通讯作者:
Zhao Xiaojie
A longitudinal study of brain activation during stroke recovery using BOLD-fMRI
使用 BOLD-fMRI 进行中风恢复期间大脑激活的纵向研究
- DOI:
10.1109/ner.2015.7146767 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ping Wang;Zengai Chen;Lin Cheng;Qun Xu;Q. Lu;Jianrong Xu;Yao Li;S. Tong - 通讯作者:
S. Tong
Yao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Li', 18)}}的其他基金
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
$ 14.42万 - 项目类别:
Standard Grant
Analysis and Data-Driven Computation for Nonequilibrium Thermodynamic Models
非平衡热力学模型的分析和数据驱动计算
- 批准号:
2108628 - 财政年份:2021
- 资助金额:
$ 14.42万 - 项目类别:
Standard Grant
Second Northeast Conference on Dynamical Systems
第二届东北动力系统会议
- 批准号:
1900397 - 财政年份:2019
- 资助金额:
$ 14.42万 - 项目类别:
Standard Grant
Parallel and Efficient Optical MSD Arithmetic Processing
并行高效的光学 MSD 算术处理
- 批准号:
8921337 - 财政年份:1990
- 资助金额:
$ 14.42万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Effect of thermal activation and vibrational dynamics of dislocations on thermodynamic dislocation theory
位错的热激活和振动动力学对热力学位错理论的影响
- 批准号:
447038308 - 财政年份:2020
- 资助金额:
$ 14.42万 - 项目类别:
WBP Fellowship
Thermodynamic stability of semiclathrate hydrates using molecular dynamics simulation
使用分子动力学模拟半笼形水合物的热力学稳定性
- 批准号:
17K14608 - 财政年份:2017
- 资助金额:
$ 14.42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Dynamics and Thermodynamic of Inherent Structure of Glass
玻璃固有结构的动力学和热力学
- 批准号:
17K05589 - 财政年份:2017
- 资助金额:
$ 14.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermodynamic formalism for non-compact spaces with applications in conformal dynamics
非紧空间的热力学形式及其在共形动力学中的应用
- 批准号:
17K14203 - 财政年份:2017
- 资助金额:
$ 14.42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Investigations of the thermodynamic properties of black holes based on the dynamics near the event horizons
基于事件视界附近动力学的黑洞热力学性质研究
- 批准号:
16K05333 - 财政年份:2016
- 资助金额:
$ 14.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Steady state thermodynamic structure for population dynamics and its application
种群动态的稳态热力学结构及其应用
- 批准号:
16K17763 - 财政年份:2016
- 资助金额:
$ 14.42万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Dynamics of interactions between thermodynamic properties and wall turbulence in supercritical fluids and quantification of uncertainty
超临界流体中热力学性质与壁湍流之间相互作用的动力学和不确定性的量化
- 批准号:
26709066 - 财政年份:2014
- 资助金额:
$ 14.42万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Thermodynamic Formalism, Dynamics and Dimensions
热力学形式主义、动力学和尺寸
- 批准号:
1361677 - 财政年份:2014
- 资助金额:
$ 14.42万 - 项目类别:
Continuing Grant
Entropy calculations by thermodynamic approach using symplectic molecular dynamics simultaions
使用辛分子动力学模拟通过热力学方法计算熵
- 批准号:
23540458 - 财政年份:2011
- 资助金额:
$ 14.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular dynamics simulations of the thermodynamic and kinetic properties of crystal-melt interfaces
晶体-熔体界面热力学和动力学性质的分子动力学模拟
- 批准号:
360561-2008 - 财政年份:2011
- 资助金额:
$ 14.42万 - 项目类别:
Discovery Grants Program - Individual