Analysis and Data-Driven Computation for Nonequilibrium Thermodynamic Models
非平衡热力学模型的分析和数据驱动计算
基本信息
- 批准号:2108628
- 负责人:
- 金额:$ 22.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The role of statistical mechanics is to study large assemblies of microscopic entities (such as atoms and molecules) and to bridge the gap between microscopic entities and macroscopic properties like temperature profile and thermal conductivity. Mathematical justifications of numerous problems in nonequilibrium statistical mechanics, such as, for example, Fourier’s law statement that the heat flux is proportional to the temperature gradient, remain highly challenging. This project aims to develop novel analytical tools and data-driven computational methods to study a series of nonequilibrium thermodynamic models arising from statistical physics and wave turbulence. These nonequilibrium models are relevant not only for the statistical physics, but also for countless applied scientific problems that are intrinsically irreversible and multiscale, such as chemical reactions and neural dynamics. The project also provides research training opportunities for graduate students and advanced undergraduate students.In this project, the principal investigator (PI) will use a combination of analytical and computational approaches to investigate how thermodynamic properties are derived from a class of microscopic energy transfer models, including classical billiards-like systems and nonlinear oscillator chain models coming from nonequilibrium statistical physics and wave turbulence. The general approach is to use minimum computational work to bypass some difficulties and to derive mathematically tractable stochastic models. Developing thermodynamic laws from those stochastic models are usually much easier. The development and application of data-driven computational methods is a constitutive element of the proposed research. The PI has developed a series of novel computational methods that combines traditional Monte Carlo simulation with tools like numerical partial differential equation solver, coupling method, and artificial neural network. They overcome several disadvantages of traditional, discretization-based algorithms, especially for high-dimensional problems. When studying many high-dimensional problems in this project, we need computational results of high-dimensional invariant probability measure and its ergodicity to bypass difficulties that are beyond the reach of rigorous methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计力学的作用是研究微观实体(如原子和分子)的大集合,并弥合微观实体与宏观性质(如温度分布和热导率)之间的差距。非平衡统计力学中的许多问题的数学证明,例如傅立叶定律中热通量与温度梯度成比例的说法,仍然具有很大的挑战性。该项目旨在开发新的分析工具和数据驱动的计算方法,以研究一系列由统计物理和波动湍流引起的非平衡热力学模型。这些非平衡态模型不仅与统计物理学有关,而且与无数本质上不可逆和多尺度的应用科学问题有关,例如化学反应和神经动力学。本项目的主要研究者(PI)将结合分析和计算方法,研究如何从一类微观能量传递模型中推导出热力学性质,这些模型包括经典的类台球系统和来自非平衡统计物理和波动湍流的非线性振子链模型。一般的方法是使用最小的计算工作,以绕过一些困难,并推导出数学上易于处理的随机模型。从这些随机模型中发展热力学定律通常要容易得多。数据驱动的计算方法的开发和应用是拟议研究的组成部分。PI开发了一系列新颖的计算方法,将传统的Monte Carlo模拟与数值偏微分方程求解器,耦合方法和人工神经网络等工具相结合。他们克服了传统的,基于离散化的算法,特别是高维问题的几个缺点。在研究该项目中的许多高维问题时,我们需要高维不变概率测度及其遍历性的计算结果,以绕过严格方法无法达到的困难。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial neural network solver for time-dependent Fokker–Planck equations
用于求解瞬态福克普朗克方程的人工神经网络求解器
- DOI:10.1016/j.amc.2023.128185
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Li, Yao;Meredith, Caleb
- 通讯作者:Meredith, Caleb
Data-Driven Computational Methods for Quasi-Stationary Distribution and Sensitivity Analysis
- DOI:10.1007/s10884-022-10137-2
- 发表时间:2022-02
- 期刊:
- 影响因子:1.3
- 作者:Yao Li;Yaping Yuan
- 通讯作者:Yao Li;Yaping Yuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Li其他文献
Ensemble Framework Combining Family Information for Android Malware Detection
Ensemble Framework 结合系列信息进行 Android 恶意软件检测
- DOI:
10.1093/comjnl/bxac114 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
Yao Li;Zhi Xiong;Tao Zhang;Qinkun Zhang;Ming Fan;Lei Xue - 通讯作者:
Lei Xue
A Novel Ensemble Classification for Data Streams with Class Imbalance and Concept Drift
具有类不平衡和概念漂移的数据流的新型集成分类
- DOI:
10.23940/ijpe.17.06.p15.945955 - 发表时间:
2017-10 - 期刊:
- 影响因子:0
- 作者:
Yange Sun;Zhihai Wang;Hongtao Li;Yao Li - 通讯作者:
Yao Li
Calculation of anharmonic effects in the unimolecular dissociation of M2+ (H2O)(2) (M = Be, Mg, and Ca)
计算 M2 (H2O)(2) 单分子解离中的非简谐效应(M = Be、Mg 和 Ca)
- DOI:
10.1080/00268976.2015.1036148 - 发表时间:
2015 - 期刊:
- 影响因子:1.7
- 作者:
Li Qian;Yao Li;Xia Wenwen;Lin S. H. - 通讯作者:
Lin S. H.
Real-time ballistocardiographic artifact reduction using the k-teager energy operator detector and multi-channel referenced adaptive noise cancelling
使用 k-teager 能量算子检测器和多通道参考自适应噪声消除来减少实时心冲击描记伪影
- DOI:
10.1002/ima.22178 - 发表时间:
2016 - 期刊:
- 影响因子:3.3
- 作者:
Wen Xiaotong;Kang Mingxuan;Yao Li;Zhao Xiaojie - 通讯作者:
Zhao Xiaojie
A longitudinal study of brain activation during stroke recovery using BOLD-fMRI
使用 BOLD-fMRI 进行中风恢复期间大脑激活的纵向研究
- DOI:
10.1109/ner.2015.7146767 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ping Wang;Zengai Chen;Lin Cheng;Qun Xu;Q. Lu;Jianrong Xu;Yao Li;S. Tong - 通讯作者:
S. Tong
Yao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Li', 18)}}的其他基金
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
Second Northeast Conference on Dynamical Systems
第二届东北动力系统会议
- 批准号:
1900397 - 财政年份:2019
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
From Deterministic Dynamics to Thermodynamic Laws
从确定性动力学到热力学定律
- 批准号:
1813246 - 财政年份:2018
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
Parallel and Efficient Optical MSD Arithmetic Processing
并行高效的光学 MSD 算术处理
- 批准号:
8921337 - 财政年份:1990
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 22.55万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Phonon Database Generation, Analysis, and Visualization for Data Driven Materials Discovery
协作研究:要素:数据驱动材料发现的声子数据库生成、分析和可视化
- 批准号:
2311202 - 财政年份:2023
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
RAPID: DRL AI: Data Driven Approaches to Integrating AI in K-12 Education Using Social Media Analysis
RAPID:DRL AI:利用社交媒体分析将 AI 集成到 K-12 教育中的数据驱动方法
- 批准号:
2332306 - 财政年份:2023
- 资助金额:
$ 22.55万 - 项目类别:
Standard Grant
Data-driven thermal analysis aiming for high-precision digital twin of spacecraft thermal systems
数据驱动的热分析,旨在实现航天器热系统的高精度数字孪生
- 批准号:
22KJ0252 - 财政年份:2023
- 资助金额:
$ 22.55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Towards Data-Driven and Field-Validated Microgrid Modeling and Analysis Techniques
职业:迈向数据驱动和现场验证的微电网建模和分析技术
- 批准号:
2237886 - 财政年份:2023
- 资助金额:
$ 22.55万 - 项目类别:
Continuing Grant