CHS: Small: Enhancing Data Analysis Strategies with Mixed-Initiative Visual Analytics
CHS:小型:通过混合主动可视化分析增强数据分析策略
基本信息
- 批准号:1813281
- 负责人:
- 金额:$ 49.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
People make important decisions based on data every day, from simple choices such as which restaurant to dine at when visiting a city, to important and complex decisions in healthcare about which course of treatment to pursue, and even decisions that impact national security and policy. Visual analytic systems play a critical role in these decision-making processes. They allow people to interact with their data and analytic models to view different perspectives of data and gain insights. This interactive data analysis process consists of people incrementally guiding analytic models to produce alternate views of the data in support of their tasks. In most cases, such human-in-the-loop processes have successful, insightful outcomes. However, the cognitive sciences tell us that people can exhibit innate biased behavior. As a result, their data analysis behaviors and strategies may suffer. Ultimately, this could lead to decisions made from incomplete information and limited perspectives on how the data can be interpreted. Biased analysis processes can lead to biased results and misinformation. This project will perform fundamental research to discover how to detect such potential bias and develop visual analytic systems that mitigate it. It will also produce educational impacts for graduate and undergraduate students from groups underrepresented in STEM fields, in part through outreach workshops with instructors from minority-serving institutions and historically black colleges and universities to help them integrate visual analytics and general data literacy learning objectives into course curricula. The proposed multi-disciplinary research will develop techniques that enhance mixed-initiative visual analytic analysis processes by intervening and providing guidance when necessary. To accomplish this goal, three primary lines of research are proposed. First, the team will develop and evaluate computational metrics to detect poor and potentially biased analysis strategies from user interaction patterns and system parameters. These metrics consist of probabilistic computational models that take into consideration metrics such as data coverage over the duration of the data exploration. Second, the team will develop and study different visual analytic system designs to guide and improve people's analysis processes. Each prototype will give people guidance using the metrics, but display information to users via different interface designs (e.g., dialog boxes, visual overlays of coverage, etc.) They will be developed, evaluated, and made available via publications and open-source code. Third, the studies proposed will generate empirical results and design guidelines for future mixed-initiative visual analytic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们每天都根据数据做出重要的决定,从访问城市时要用餐的简单选择,到医疗保健中重要而复杂的决定,就可以追求哪种治疗方法,甚至影响国家安全和政策的决定。视觉分析系统在这些决策过程中起着至关重要的作用。他们允许人们与数据和分析模型进行互动,以查看数据的不同观点并获得见解。这个交互式数据分析过程包括逐步指导分析模型的人,以产生数据以支持其任务的替代视图。在大多数情况下,这种人类的过程具有成功,有见地的结果。但是,认知科学告诉我们,人们可以表现出天生的偏见行为。结果,他们的数据分析行为和策略可能会受到影响。最终,这可能会导致从不完整的信息做出的决定,并就如何解释数据进行有限的观点。偏见的分析过程可能导致偏见的结果和错误信息。该项目将进行基本研究,以发现如何检测这种潜在的偏见并开发减轻其的视觉分析系统。 它还将对来自STEM领域中代表性不足的团体的研究生和本科生产生教育影响,部分是通过与少数族裔服务机构的讲师以及历史上黑人学院和大学的讲师来帮助他们整合视觉分析,并将一般数据素养学习目标整合到课程中。拟议的多学科研究将开发技术,通过介入和提供指导,从而增强混合量化的视觉分析分析过程。为了实现这一目标,提出了三个主要的研究线。首先,团队将开发和评估计算指标,以检测用户交互模式和系统参数的贫困和潜在偏见的分析策略。这些指标由概率计算模型组成,这些计算模型考虑到数据探索期间的数据覆盖率等指标。其次,团队将开发和研究不同的视觉分析系统设计,以指导和改善人们的分析过程。每个原型都会使用指标为人们提供指导,但是通过不同的接口设计(例如,对话框,视觉覆盖层的视觉覆盖层等)向用户展示信息。他们将通过出版物和开源代码开发,评估和提供。第三,提出的研究将针对未来的混合初始性视觉分析系统产生经验结果和设计指南。该奖项反映了NSF的法定使命,并被认为是值得通过基金会的知识分子和更广泛影响的审查标准通过评估来获得支持的。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward a Design Space for Mitigating Cognitive Bias in Vis
- DOI:10.1109/visual.2019.8933611
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Emily Wall;J. Stasko;A. Endert
- 通讯作者:Emily Wall;J. Stasko;A. Endert
Toward a Bias-Aware Future for Mixed-Initiative Visual Analytics
迈向混合主动视觉分析的偏见感知未来
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Coscia, A;Chau, D H:
- 通讯作者:Chau, D H:
Left, Right, and Gender: Exploring Interaction Traces to Mitigate Human Biases
左、右和性别:探索交互痕迹以减轻人类偏见
- DOI:10.1109/tvcg.2021.3114862
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Wall, Emily;Narechania, Arpit;Coscia, Adam;Paden, Jamal;Endert, Alex
- 通讯作者:Endert, Alex
Lumos: Increasing Awareness of Analytic Behavior during Visual Data Analysis
Lumos:提高可视化数据分析过程中分析行为的意识
- DOI:10.1109/tvcg.2021.3114827
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Narechania, Arpit;Coscia, Adam;Wall, Emily;Endert, Alex
- 通讯作者:Endert, Alex
Warning, Bias May Occur: A Proposed Approach to Detecting Cognitive Bias in Interactive Visual Analytics
警告,可能会出现偏差:一种检测交互式视觉分析中认知偏差的提议方法
- DOI:10.1109/vast.2017.8585669
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Wall, Emily;Blaha, Leslie M.;Franklin, Lyndsey;Endert, Alex
- 通讯作者:Endert, Alex
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Endert其他文献
Alexander Endert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Endert', 18)}}的其他基金
CAREER: Visual Analytics by Demonstration for Interactive Data Analysis
职业:交互式数据分析演示的可视化分析
- 批准号:
1750474 - 财政年份:2018
- 资助金额:
$ 49.14万 - 项目类别:
Continuing Grant
相似国自然基金
低剂量放疗联合PD-1抑制剂协同增强CXCR6修饰的DLL3-CAR-T细胞治疗小细胞肺癌的疗效及机制研究
- 批准号:82303773
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
疫情冲击后小微企业的长期恢复机制与韧性增强策略研究
- 批准号:72304064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
BCL-2抑制剂Lisaftoclax通过上调ACSL4表达诱导M2型肿瘤相关巨噬细胞铁死亡增强非小细胞肺癌免疫治疗疗效的机制研究
- 批准号:82303807
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细叶远志皂苷靶向ABCA1-GULP1轴增强小胶质细胞吞噬功能促进MS髓鞘再生的机制研究
- 批准号:82304752
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于小波交叉注意力机制的单幅图像可变光圈散焦增强研究
- 批准号:62301332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CHS: Small: Enhancing EEG-based Emotion Estimation with Transfer Learning, Priming, and Virtual Reality
CHS:小:通过迁移学习、启动和虚拟现实增强基于脑电图的情绪估计
- 批准号:
1910526 - 财政年份:2019
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
CHS: Small: Enhancing Educational Virtual Reality with Headset-based Eye Tracking
CHS:小型:通过基于耳机的眼动追踪增强教育虚拟现实
- 批准号:
1815976 - 财政年份:2018
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
CHS:Small: A Kinder, Gentler Technology: Enhancing Human-Machine Symbiosis Using Adaptive, Personalized Affect-Aware Systems
CHS:Small:更友善、更温和的技术:使用自适应、个性化情感感知系统增强人机共生
- 批准号:
1717705 - 财政年份:2017
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Repair, Maintenance and Sustainability: Enhancing Sustainability by Strengthening the Design/Repair Nexus
CHS:小型:协作研究:维修、维护和可持续性:通过加强设计/维修关系来增强可持续性
- 批准号:
1422621 - 财政年份:2015
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Repair, Maintenance and Sustainability: Enhancing Sustainability by Strengthening the Design/Repair Nexus
CHS:小型:协作研究:维修、维护和可持续性:通过加强设计/维修关系来增强可持续性
- 批准号:
1423074 - 财政年份:2015
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant