CHS: Small: Enhancing Data Analysis Strategies with Mixed-Initiative Visual Analytics
CHS:小型:通过混合主动可视化分析增强数据分析策略
基本信息
- 批准号:1813281
- 负责人:
- 金额:$ 49.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
People make important decisions based on data every day, from simple choices such as which restaurant to dine at when visiting a city, to important and complex decisions in healthcare about which course of treatment to pursue, and even decisions that impact national security and policy. Visual analytic systems play a critical role in these decision-making processes. They allow people to interact with their data and analytic models to view different perspectives of data and gain insights. This interactive data analysis process consists of people incrementally guiding analytic models to produce alternate views of the data in support of their tasks. In most cases, such human-in-the-loop processes have successful, insightful outcomes. However, the cognitive sciences tell us that people can exhibit innate biased behavior. As a result, their data analysis behaviors and strategies may suffer. Ultimately, this could lead to decisions made from incomplete information and limited perspectives on how the data can be interpreted. Biased analysis processes can lead to biased results and misinformation. This project will perform fundamental research to discover how to detect such potential bias and develop visual analytic systems that mitigate it. It will also produce educational impacts for graduate and undergraduate students from groups underrepresented in STEM fields, in part through outreach workshops with instructors from minority-serving institutions and historically black colleges and universities to help them integrate visual analytics and general data literacy learning objectives into course curricula. The proposed multi-disciplinary research will develop techniques that enhance mixed-initiative visual analytic analysis processes by intervening and providing guidance when necessary. To accomplish this goal, three primary lines of research are proposed. First, the team will develop and evaluate computational metrics to detect poor and potentially biased analysis strategies from user interaction patterns and system parameters. These metrics consist of probabilistic computational models that take into consideration metrics such as data coverage over the duration of the data exploration. Second, the team will develop and study different visual analytic system designs to guide and improve people's analysis processes. Each prototype will give people guidance using the metrics, but display information to users via different interface designs (e.g., dialog boxes, visual overlays of coverage, etc.) They will be developed, evaluated, and made available via publications and open-source code. Third, the studies proposed will generate empirical results and design guidelines for future mixed-initiative visual analytic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们每天都会根据数据做出重要决定,从访问城市时在哪家餐厅就餐这样的简单选择,到医疗保健领域关于选择哪个疗程的重大而复杂的决定,甚至是影响国家安全和政策的决定。视觉分析系统在这些决策过程中发挥着关键作用。它们允许人们与他们的数据和分析模型进行交互,以查看数据的不同视角并获得洞察力。这种交互式数据分析过程包括人员逐步指导分析模型生成数据的替代视图,以支持他们的任务。在大多数情况下,这种人在循环中的过程会产生成功的、有洞察力的结果。然而,认知科学告诉我们,人可能会表现出天生的偏见行为。因此,他们的数据分析行为和策略可能会受到影响。最终,这可能会导致在信息不完整的情况下做出决定,并对如何解释数据的视角有限。有偏见的分析过程可能会导致有偏见的结果和错误信息。这个项目将进行基础研究,以发现如何检测这种潜在的偏见,并开发视觉分析系统来缓解它。它还将对STEM领域代表性不足的群体的研究生和本科生产生教育影响,部分是通过与少数族裔服务机构和历史上黑人学院和大学的教师举办外联讲习班,帮助他们将视觉分析和一般数据扫盲学习目标纳入课程课程。拟议的多学科研究将开发技术,通过干预和在必要时提供指导来增强混合主动视觉分析过程。为了实现这一目标,提出了三条主要的研究路线。首先,该团队将开发和评估计算指标,以从用户交互模式和系统参数中检测糟糕的和潜在的有偏见的分析策略。这些指标由概率计算模型组成,其中考虑了数据探索持续时间内的数据覆盖率等指标。其次,该团队将开发和研究不同的视觉分析系统设计,以指导和改进人们的分析过程。每个原型将使用指标为人们提供指导,但通过不同的界面设计(例如,对话框、覆盖范围的可视覆盖等)向用户显示信息。它们将被开发、评估,并通过出版物和开放源码提供。第三,建议的研究将产生经验结果和未来混合倡议视觉分析系统的设计指南。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward a Design Space for Mitigating Cognitive Bias in Vis
- DOI:10.1109/visual.2019.8933611
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Emily Wall;J. Stasko;A. Endert
- 通讯作者:Emily Wall;J. Stasko;A. Endert
Toward a Bias-Aware Future for Mixed-Initiative Visual Analytics
迈向混合主动视觉分析的偏见感知未来
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Coscia, A;Chau, D H:
- 通讯作者:Chau, D H:
Left, Right, and Gender: Exploring Interaction Traces to Mitigate Human Biases
左、右和性别:探索交互痕迹以减轻人类偏见
- DOI:10.1109/tvcg.2021.3114862
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Wall, Emily;Narechania, Arpit;Coscia, Adam;Paden, Jamal;Endert, Alex
- 通讯作者:Endert, Alex
Lumos: Increasing Awareness of Analytic Behavior during Visual Data Analysis
Lumos:提高可视化数据分析过程中分析行为的意识
- DOI:10.1109/tvcg.2021.3114827
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Narechania, Arpit;Coscia, Adam;Wall, Emily;Endert, Alex
- 通讯作者:Endert, Alex
Warning, Bias May Occur: A Proposed Approach to Detecting Cognitive Bias in Interactive Visual Analytics
警告,可能会出现偏差:一种检测交互式视觉分析中认知偏差的提议方法
- DOI:10.1109/vast.2017.8585669
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Wall, Emily;Blaha, Leslie M.;Franklin, Lyndsey;Endert, Alex
- 通讯作者:Endert, Alex
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Endert其他文献
Alexander Endert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Endert', 18)}}的其他基金
CAREER: Visual Analytics by Demonstration for Interactive Data Analysis
职业:交互式数据分析演示的可视化分析
- 批准号:
1750474 - 财政年份:2018
- 资助金额:
$ 49.14万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CC* Integration-Small: Enhancing Data Transfers by Enabling Programmability and Closed-loop Control in a Non-programmable Science DMZ
CC* Integration-Small:通过在不可编程科学 DMZ 中启用可编程性和闭环控制来增强数据传输
- 批准号:
2346726 - 财政年份:2024
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
CSR: Small: Enhancing Timeliness and Power-Efficiency of Real-Time Data Services
CSR:小:提高实时数据服务的及时性和能效
- 批准号:
2326796 - 财政年份:2023
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
Enhancing Cyber Resilience of Small and Medium-sized Enterprises through Cyber Security Communities of Support
通过网络安全支持社区增强中小企业的网络弹性
- 批准号:
EP/X037282/1 - 财政年份:2023
- 资助金额:
$ 49.14万 - 项目类别:
Research Grant
SHF: Small: Exploring and Enhancing Capabilities of Emerging Hybrid/Convertible Solid-State Drives
SHF:小型:探索和增强新兴混合/可转换固态硬盘的功能
- 批准号:
2413520 - 财政年份:2023
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
Enhancing immunotherapy through the food-gut-axis in non-small cell lung cancer
通过食物-肠轴增强非小细胞肺癌的免疫治疗
- 批准号:
488910 - 财政年份:2023
- 资助金额:
$ 49.14万 - 项目类别:
Operating Grants
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
$ 49.14万 - 项目类别:
Small molecule modulators of lncRNA NEAT1_2: A novel approach to enhancing the endogenous neuroprotective response in amyotrophic lateral sclerosis
lncRNA NEAT1_2的小分子调节剂:增强肌萎缩侧索硬化症内源性神经保护反应的新方法
- 批准号:
MC_PC_MR/W031647/1 - 财政年份:2022
- 资助金额:
$ 49.14万 - 项目类别:
Research Grant
SHF: Small: Exploring and Enhancing Capabilities of Emerging Hybrid/Convertible Solid-State Drives
SHF:小型:探索和增强新兴混合/可转换固态硬盘的功能
- 批准号:
2208317 - 财政年份:2022
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: A Framework for Enhancing the Resilience of Cyber Attack Classification and Clustering Mechanisms
SaTC:核心:小型:协作:增强网络攻击分类和集群机制弹性的框架
- 批准号:
2122631 - 财政年份:2021
- 资助金额:
$ 49.14万 - 项目类别:
Standard Grant
Digitization PEN: Small and Hungry: Enhancing LepNet TCN with microlepidoptera and 50 years of host plant data from the Essig Museum
数字化 PEN:小而饥饿:利用微鳞翅目和 Essig 博物馆 50 年寄主植物数据增强 LepNet TCN
- 批准号:
2101816 - 财政年份:2021
- 资助金额:
$ 49.14万 - 项目类别:
Continuing Grant