Mathematics of Collective Behavior: From Self-Organized Dynamics to Fluid Turbulence

集体行为数学:从自组织动力学到流体湍流

基本信息

  • 批准号:
    1813351
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The theory of collective behavior is a rapidly developing area of mathematics that studies emergence of global phenomena in many biological, social and technological systems. Examples of such systems include flocks of birds, schools of fish, social networking, and exchange of political opinions among people. Although these systems arise from seemingly disconnected contexts, they share many common principles of self-organization. The project puts forward a comprehensive program of research to study those principles. More specifically, it aims to understand how "agents" in collective systems driven by their natural laws of communication can build global formations, such flocks, using only local interactions. This project will systematically classify types of global formations, their structure and stability under presence of an external force, such as gust of wind in the context of bird flocks or media influence in the context of opinion dynamics. On the way, the project will bring a connection between real applications and a new purely theoretical area of mathematics that studies spread of information in diffusive systems. The project will involve one graduate student, who will be involved in theoretical aspects as well as numerical and visual implementations of the proposed research. The technical implementation of the goals of the project involves modeling of emergent dynamics through a novel system of fractional parabolic equations. The system is designed to predict the end-state behavior of a "flock" through a careful long-time analysis of its global solutions. The new feature of proposed model involves inclusion of an adaptive anisotropic diffusion kernel as the main alignment mechanism of global behavior. This feature is not only mathematically motivated but is also observed in many biological and social congregations. The tools used in the analysis will be extended to study regularity problems in a more general class of parabolic and elliptic equations. The project will address validity of the classical laws such as energy conservation and will bring connection with the celebrated Onsager conjecture of 1949 that studies sharp regularity conditions under which such laws hold.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
集体行为理论是一个快速发展的数学领域,研究许多生物,社会和技术系统中出现的全球现象。这种系统的例子包括鸟群、鱼群、社交网络和人们之间的政治观点交换。虽然这些系统产生于看似不相关的背景,但它们有许多共同的自组织原则。该项目提出了一个研究这些原则的综合研究方案。更具体地说,它旨在了解集体系统中的“代理人”如何由其通信的自然法则驱动,仅使用本地交互就可以建立全球编队,例如羊群。该项目将系统地分类全球形态的类型,它们的结构和在外力存在下的稳定性,例如鸟群背景下的阵风或舆论动态背景下的媒体影响。在这个过程中,该项目将带来真实的应用和一个新的纯理论数学领域之间的联系,该领域研究扩散系统中的信息传播。该项目将涉及一名研究生,他们将参与理论方面以及拟议研究的数值和视觉实现。 该项目目标的技术实现涉及通过一个新的分数抛物方程系统对紧急动态进行建模。该系统的目的是通过仔细的长期分析其全球解决方案来预测“羊群”的最终状态行为。该模型的新功能包括一个自适应各向异性扩散内核作为全球行为的主要对齐机制。这一特点不仅是数学动机,但也观察到许多生物和社会的会众。在分析中使用的工具将被扩展到研究更一般的一类抛物和椭圆方程的正则性问题。该项目将解决经典定律(如能量守恒定律)的有效性问题,并将与著名的1949年Onsager猜想(研究此类定律成立的严格规律性条件)联系起来。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Entropy Hierarchies for Equations of Compressible Fluids and Self-Organized Dynamics
  • DOI:
    10.1137/19m1278983
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Constantin;Theodore D. Drivas;R. Shvydkoy
  • 通讯作者:
    P. Constantin;Theodore D. Drivas;R. Shvydkoy
Propagation of chaos for the Cucker-Smale systems under heavy tail communication
重尾通信下 Cucker-Smale 系统的混沌传播
Grassmannian reduction of cucker-smale systems and dynamical opinion games
cucker-smale 系统的格拉斯曼还原和动态意见博弈
  • DOI:
    10.3934/dcds.2021095
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Lear, Daniel;Reynolds, David N.;Shvydkoy, Roman
  • 通讯作者:
    Shvydkoy, Roman
Topologically Based Fractional Diffusion and Emergent Dynamics with Short-Range Interactions
基于拓扑的分数扩散和短程相互作用的突现动力学
Global Solutions to Multi-dimensional Topological Euler Alignment Systems
多维拓扑欧拉对准系统的全局解决方案
  • DOI:
    10.1007/s40818-021-00116-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Lear, Daniel;Reynolds, David N.;Shvydkoy, Roman
  • 通讯作者:
    Shvydkoy, Roman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Shvydkoy其他文献

The Essential Spectrum of Advective Equations
Well-posedness and Long Time Behavior of the Euler Alignment System with Adaptive Communication Strength
具有自适应通信强度的欧拉对准系统的适定性和长时间行为
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roman Shvydkoy;Trevor Teolis
  • 通讯作者:
    Trevor Teolis
Generic alignment conjecture for systems of Cucker–Smale type
Cucker-Smale 型系统的一般对齐猜想

Roman Shvydkoy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Shvydkoy', 18)}}的其他基金

Hydrodynamics of Collective Phenomena and Applications
集体现象的流体动力学及其应用
  • 批准号:
    2107956
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Mechanisms for Energy Conservation in Onsager Supercritical Fluids
Onsager 超临界流体的节能机制
  • 批准号:
    1515705
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Anomalous dissipation in fluids, deterministic turbulence, and intermittency
流体中的反常耗散、确定性湍流和间歇性
  • 批准号:
    1210896
  • 财政年份:
    2012
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Onsager's conjecture and the energy of singular flows
昂萨格猜想和奇异流能量
  • 批准号:
    0907812
  • 财政年份:
    2009
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Instability of Fluid Flows
流体流动的不稳定性
  • 批准号:
    0604050
  • 财政年份:
    2006
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似海外基金

Emergence, adaptation and cognitive cost in collective cognitive behavior
集体认知行为中的出现、适应和认知成本
  • 批准号:
    24K15688
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interaction Bottlenecks and Emergence of Collective Behavior
互动瓶颈和集体行为的出现
  • 批准号:
    23KF0108
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Neural basis of collective behavior during environmental stress
环境压力下集体行为的神经基础
  • 批准号:
    10740543
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
2023 Collective Behavior Gordon Research Conference
2023年集体行为戈登研究会议
  • 批准号:
    10683596
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
Unification of Phase and Collective Behavior of Cells based on Polarity Dynamics
基于极性动力学的细胞相位和集体行为的统一
  • 批准号:
    23K03342
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Contribution of cell mechanics in promoting collective behavior for supracellular migration
细胞力学在促进超细胞迁移集体行为中的贡献
  • 批准号:
    10680022
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
Neural mechanisms of collective behavior in social insects
群居昆虫集体行为的神经机制
  • 批准号:
    22H02705
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Investigation of the Mechanism of Emergence of Collective Behavior in Motile Cilia Using Model Artificial Cilia
LEAPS-MPS:使用模型人工纤毛研究运动纤毛集体行为出现的机制
  • 批准号:
    2213371
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
IBSS-L: Inequity Aversion, Individual Decision Making, and the Emergence of Collective Behavior
IBSS-L:不平等厌恶、个人决策和集体行为的出现
  • 批准号:
    2135621
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EAGER:Large-Scale Behavior and Collective Effects in Concentrated Bacterial Suspensions in Mucus
EAGER:粘液中浓缩细菌悬浮液的大规模行为和集体效应
  • 批准号:
    2140010
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了