Mechanisms for Energy Conservation in Onsager Supercritical Fluids

Onsager 超临界流体的节能机制

基本信息

  • 批准号:
    1515705
  • 负责人:
  • 金额:
    $ 27.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

The complexity of turbulent motion of fluids like water presents many theoretical as well as technological challenges. From the practical standpoint laws of turbulence are crucial in many real-life applications. They stand behind the modern design of a plane airfoil or development of weather and climate forecast models. One of the features of turbulence is called anomalous energy dissipation. This phenomenon arises when the motion of a fluid is so chaotic or rough that the the classical laws of smooth dynamics no longer apply. Anomalous energy dissipation is harnessed in many commonly used energy-dumping mechanisms, such as automobile wheel struts. Common though it is, in some cases energy dissipation does not occur even in what otherwise would be considered a flow turbulent enough to facilitate such dissipation. It has been observed that in various natural phenomena, such as vortex sheets that develop behind the wing of a plane, energy dissipation does not occur until motion reaches a supercritical state. The project goal is to isolate several mechanisms responsible for energy preservation or dissipation in fluid motion that is turbulent or nearly so. A main focus is on investigation of the role of symmetries in energy conservation. Students are included in the project. The investigator studies weak solutions to the Euler equation and its viscous Navier-Stokes counterpart in the vanishing viscosity limit regime, by considering the role of energy conservation or dissipation in the fluid flows described by these equations. The equations have been shown to describe turbulence rather accurately from a numerical point of view, although theoretically they present many challenges. Following Onsager, in terms of regularity a solution reaches its turbulent state when smoothness of the flow is reduced to a third of one full derivative, also known as Onsager regularity. In that regularity regime the investigator examines four main mechanisms as candidates responsible for energy conservation or dissipation: Hamiltonian structure of the underlying governing equation, incompressibility condition, basic scaling symmetries and transport nature of the motion, and the vanishing viscosity limit in the two-dimensional setting. The last point connects energy dissipation to regularity of solutions of the Euler equations. The project involves active participation of students.
水等流体湍流运动的复杂性提出了许多理论和技术挑战。 从实际的观点来看,湍流定律在许多实际应用中是至关重要的。 他们支持现代飞机机翼的设计或天气和气候预测模型的发展。 湍流的特征之一称为反常能量耗散。 当流体的运动如此混乱或粗糙,以至于光滑动力学的经典定律不再适用时,就会出现这种现象。 异常能量耗散在许多常用的能量倾销机制中被利用,例如汽车车轮支柱。 虽然这是常见的,但在某些情况下,即使在被认为是湍流足以促进这种耗散的情况下,也不会发生能量耗散。 已经观察到,在各种自然现象中,例如在飞机机翼后面形成的涡面,能量耗散直到运动达到超临界状态才发生。 该项目的目标是隔离几个机制,负责能量保存或耗散的流体运动是湍流或接近。 一个主要的重点是调查的作用,对称性的能量守恒。 学生被纳入该项目。 研究人员研究弱解欧拉方程及其粘性Navier-Stokes对应的消失粘度极限制度,通过考虑这些方程描述的流体流动中的能量守恒或耗散的作用。 从数值的角度来看,这些方程已经被证明可以相当准确地描述湍流,尽管理论上它们存在许多挑战。 在昂萨格之后,在正则性方面,当流动的平滑度降低到一个全导数的三分之一时,解达到其湍流状态,也称为昂萨格正则性。 在该规律性制度的调查员检查四个主要机制作为候选人负责能量守恒或耗散:基本的控制方程的哈密顿结构,不可压缩性条件,基本的缩放对称性和运输性质的运动,和消失的粘度限制在二维设置。 最后一点将能量耗散与欧拉方程解的正则性联系起来。 该项目涉及学生的积极参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Shvydkoy其他文献

The Essential Spectrum of Advective Equations
Well-posedness and Long Time Behavior of the Euler Alignment System with Adaptive Communication Strength
具有自适应通信强度的欧拉对准系统的适定性和长时间行为
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roman Shvydkoy;Trevor Teolis
  • 通讯作者:
    Trevor Teolis
Generic alignment conjecture for systems of Cucker–Smale type
Cucker-Smale 型系统的一般对齐猜想

Roman Shvydkoy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Shvydkoy', 18)}}的其他基金

Hydrodynamics of Collective Phenomena and Applications
集体现象的流体动力学及其应用
  • 批准号:
    2107956
  • 财政年份:
    2021
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Mathematics of Collective Behavior: From Self-Organized Dynamics to Fluid Turbulence
集体行为数学:从自组织动力学到流体湍流
  • 批准号:
    1813351
  • 财政年份:
    2018
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Anomalous dissipation in fluids, deterministic turbulence, and intermittency
流体中的反常耗散、确定性湍流和间歇性
  • 批准号:
    1210896
  • 财政年份:
    2012
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Onsager's conjecture and the energy of singular flows
昂萨格猜想和奇异流能量
  • 批准号:
    0907812
  • 财政年份:
    2009
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Continuing Grant
Instability of Fluid Flows
流体流动的不稳定性
  • 批准号:
    0604050
  • 财政年份:
    2006
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: Energy Efficiency and Energy Justice: Understanding Distributional Impacts of Energy Efficiency and Conservation Programs and the Underlying Mechanisms
合作研究:能源效率和能源正义:了解能源效率和节约计划的分配影响及其潜在机制
  • 批准号:
    2315029
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Efficiency and Energy Justice: Understanding Distributional Impacts of Energy Efficiency and Conservation Programs and the Underlying Mechanisms
合作研究:能源效率和能源正义:了解能源效率和节约计划的分配影响及其潜在机制
  • 批准号:
    2315027
  • 财政年份:
    2023
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2021
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2020
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2019
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanisms of Energy Conservation in Bifurcating Electron Transfer Flavoproteins
分叉电子转移黄素蛋白的能量守恒机制
  • 批准号:
    1808433
  • 财政年份:
    2018
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Standard Grant
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2018
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2017
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2016
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2015
  • 资助金额:
    $ 27.45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了